
Adaptive Set-Point Regulation using Multiple Estimators

Mohamad T. Shahab and Daniel E. Miller

Abstract— In this paper, we consider the problem of step-
tracking for an nth-order discrete-time plant with unknown
plant parameters belonging to a closed and bounded un-
certainty set; we naturally assume that the plant does not
have a zero at z = 1. We carry out parameter estimation
for a slightly modified plant; indeed, we cover the set of
admissible parameters by a finite set of compact and convex
sets, and use an original-projection-algorithm based estimator
for each. At each point in time, a switching algorithm is used
to determine which estimates are used in the pole-placement-
based controller; our approach does not assume that the
switching stops at any point in time. We prove that this adaptive
controller guarantees desirable linear-like closed-loop behavior
(exponential stability and a bounded noise gain), as well as
asymptotic tracking when the noise is constant.
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I. INTRODUCTION

Adaptive control is an approach used to deal with systems
with uncertain or time-varying parameters. The first general
results of adaptive control came about around 1980, e.g. [3],
[4], [12], [16] and [17]. However, these controllers typically
do not tolerate unmodeled dynamics, time-variations, and/or
noise/disturbances very well, see e.g. [20]; furthermore, they
put stringent assumptions on a priori information about the
plant. Over the following two decades, there was a great
deal of effort to address these shortcomings. A common
approach was to make small controller design changes, such
as σ-modifications, signal normalization, deadzones, and
projection onto a convex set of admissible parameters; this
provides a degree of tolerance to noise, unmodelled dynamics
and/or slow time-variations, e.g. see [7], [8], [9], [15], and
[23]. In general these controllers provide only asymptotic
stability (and not exponential stability) with no bounded gain
on the noise. Clearly, it is desirable that the closed-loop
system exhibits linear-like properties, such as a bounded gain
and exponential stability.

There are various non-classical approaches to adaptive
control that provide linear-like system behavior. Supervisory
Control [13], [14], [2] and [6] shows an efficient way to
switch between candidate controllers; in certain circum-
stances a bounded gain on the noise is proven; here the
complexity of the approach grows with the size of plant un-
certainty. A falsification-based approach is discussed in [24]
proving exponential stability and some form of tolerance to
noise; however, some knowledge about the noise is assumed.
Approaches in [18], [19] and [1] utilize multiple parameter
estimators, but exponential stability is not explicitly proven.
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In [10] and [11], an approach is provided which guarantees
a linear-like convolution bound on the closed-loop behavior;
this yields exponential stability as well as a bounded gain on
the noise. The approach employs an estimator based on the
original ideal projection algorithm together with projecting
parameter estimates onto a given compact and convex set.
In [11], the convexity assumption is weakened (without
completely removing it) and stability is proven. In [22],
the same linear-like result is proven without any convexity
assumption but only for the case of 1st-order one-step-ahead
adaptive control.

In this paper, we extend the above approach to the problem
of step tracking with unknown plant parameters belonging
to a closed and bounded uncertainty set; no assumption on
convexity is imposed. We use the compactness of the set of
admissible parameters to prove that it is contained in a finite
union of convex sets; we run a parameter estimator for each
of these sets, based on the original projection algorithm. A
switching algorithm is used to determine which estimates are
used in the controller; our approach does not assume that the
switching stops at any point in time, but we are still able to
prove linear-like behavior and asymptotic step tracking.

We use standard notation throughout the paper. We denote
Z, Z+ and N as the sets of integers, non-negative integers and
natural numbers, respectively. We will denote the Euclidean-
norm of a vector and the induced norm of a matrix by the
default notation ‖·‖. Also, `∞ denotes the set of real-valued
bounded sequences. If Ω ⊂ Rp is a convex and compact
(closed and bounded) set, we define ‖Ω‖ := maxx∈Ω ‖x‖.

II. THE SETUP

A. The Plant

We consider the nth-order linear time-invariant discrete-
time plant of the form

y(t+ 1) = a1y(t) + a2y(t− 1) + · · ·+ any(t− n+ 1)+

b1u(t) + b2u(t− 1) + · · ·+ bnu(t− n+ 1) + w(t)

= φ(t)>θ∗ab + w(t), t ∈ Z (1)

with φ(t) =
[
y(t) · · · y(t−n+1) u(t) · · · u(t−n+1)

]>
and plant parameters

θ∗ab =
[
a1 a2 · · · an b1 b2 · · · bn

]> ∈ S ⊂ R2n;

y(t) ∈ R is the measured output, u(t) ∈ R is the control
input, and w(t) ∈ R is the disturbance/noise input. We
assume that θ∗ab is unknown but the set S ⊂ R2n is known.
Associated with this plant model are the polynomials

A(z−1) = 1− a1z
−1 − a2z

−2 · · · − anz−n, and
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B(z−1) = b1z
−1 + b2z

−2 · · ·+ bnz
−n;

so the plant in (1) can be expressed in the (two-sided) z-
transform form as

A(z−1)Y (z) = B(z−1)U(z) + z−1W (z). (2)

We impose two assumptions on the set of admissible plant
parameters.

Assumption 1. S is compact, and for every θ ∈ S ,
the corresponding polynomials A(z−1) & B(z−1) are
coprime.

Here we impose no convexity assumption. The boundedness
part of the assumption is reasonable in practical situations;
it is used here to ensure that we can prove uniform bounds
on the closed-loop behavior.

Assumption 2. For every θ ∈ S, the corresponding
polynomial B(z−1) is such that B(1) 6= 0.

The objective here is to prove an exponential form of
stability, asymptotic tracking of a desired set-point y∗ ∈ R
and a bounded gain on the noise; the second goal clearly
requires Assumption 2. Observe here that the plant may be
non-minimum phase.

B. The Auxiliary Plant

If the set of admissible parameters is convex, the classical
approach is to carry out system identification of the plant
in the usual way, and do the pole placement in such a way
as to force an integrator into the controller; this has been
quite effective in classical results which prove asymptotic
stability, e.g. see [5], as well as in our recent work [11]
where we prove exponential stability. If, however, the set of
admissible parameters is not convex, as is the case here, the
standard trick is to replace it with its closed convex hull.
Unfortunately, often that set will contain models that violate
coprimeness, so another approach is sought. The compact-
ness of the set of admissible parameters can be utilized to
easily prove that it is contained in a finite union of convex
sets with desirable properties; we can then use an estimator
for each convex set and from time to time switch between
estimates for use in the control law. In most of the results
on this approach in the literature, which typically considers
the disturbance-free case, to prove asymptotic tracking they
generally rely on the fact that the switching mechanism stops
switching at some point, e.g. [9], [6] and [1]. With unknown
noise entering the system, as it is our case, it is no longer
possible to conclude that switching eventually stops.

We have attempted to extend our latest work on step
tracking for the convex set case given in [11, Sec. 7] to
the general compact set through the use of multi-estimators;
while we are able to prove an exponential type of stability,
we have been unable to prove tracking1. In this paper we

1It is interesting to observe that Morse also found it especially challenging
to prove tracking in his dwell-time switching approach [14], which also
occasionally experienced ongoing switching.

will deal with this difficulty by doing system identification
on a related auxiliary model rather than the original plant
model.

To proceed, let us define the tracking error by

ȳ(t) := y(t)− y∗, (3)

and an auxiliary control input

ū(t) := u(t)− u(t− 1) (4)

as well as an adjusted disturbance signal

w̄(t) := w(t)− w(t− 1). (5)

If we multiply both sides of the plant model (2) by (1−z−1)
and then use the z-transformed counterpart of (4) and (5),
then we end up with

(1− z−1)A(z−1)︸ ︷︷ ︸
=:Ā(z−1)

Y (z) = B(z−1) (1− z−1)U(z)︸ ︷︷ ︸
Ū(z)

+

z−1 (1− z−1)W (z)︸ ︷︷ ︸
W̄ (z)

; (6)

if we use the fact that (1− z−1)Y ∗(z) = 0 and subtract that
from the above equation, then we obtain the auxiliary plant
model

Ā(z−1)Ȳ (z) = B(z−1)Ū(z) + z−1W̄ (z). (7)

Now the polynomial Ā(z−1) has the form

Ā(z−1) = (1− z−1)A(z−1)

= 1− (1 + a1)︸ ︷︷ ︸
=:ā1

z−1 − (a2 − a1)︸ ︷︷ ︸
=:ā2

z−2 − · · ·

· · · − (an − an−1)︸ ︷︷ ︸
=:ān

z−n − (−an)︸ ︷︷ ︸
=:ān+1

z−(n+1).

So we see that its parameters are determined in a simple
way from those of A(z−1). Indeed, it is easy to construct an
invertible matrix V ∈ R(2n+1)×(2n+1) so that

ā1

...
ān+1

b1
...
bn


︸ ︷︷ ︸

=:θ∗

= V



1
a1

...
an
b1
...
bn


= V

[
1
θ∗ab

]
;

so the set of admissible parameters of (7) is given by

S̄ :=

{
V
[

1
θ∗ab

]
: θ∗ab ∈ S

}
. (8)

Using this notation, in regressor form (7) becomes

ȳ(t+ 1) = φ̄(t)>θ∗ + w̄(t), (9)

with

φ̄(t) :=
[
ȳ(t) · · · ȳ(t− n) ū(t) · · · ū(t− n+ 1)

]>
.
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Remark 1. The new plant is clearly overmodelled by
one variable, which is a small price to pay to achieve our
objective.

Since S is compact, it follows that S̄ is so as well. Also,
because of Assumption 1 and 2 we see that for every θ̄ ∈
S̄, the corresponding polynomials Ā(z−1) and B(z−1) are
coprime and B(1) 6= 0. Of course, if we were to replace
S̄ by its convex hull, then those two properties may fail to
hold. This brings us to the following result, which can be
used to prove that S̄ can be approximated by a finite set of
convex sets which enjoy desired properties.

Proposition 1. For every µ > 0 there exist a finite
number of convex, compact sets Si ⊂ R2n+1 that satisfy

(i) S̄ ⊂
⋃m
i=1 Si,

(ii) for every θ ∈
⋃m
i=1 Si there exists a θ̄ ∈ S̄ that

satisfy ‖θ̄ − θ‖ ≤ µ.
Furthermore, if µ > 0 is sufficiently small, then we can
choose the Si’s to have additional property as well:

(iii) for every θ ∈
⋃m
i=1 Si, the corresponding pair

of polynomials Ā(z−1) and B(z−1) are coprime.

Proof. See the Appendix. �
In general, finding a set of m Si’s which satisfy the desired

properties of Proposition 1 for which m is small and Si has
“nice2 structure” is not easy. However, this is not the focus
of the paper. So at this point we assume that this has been
done; we will show how to do this in the Example section.

To this end, the idea is to use an estimator for each Si,
and at each point in time we choose which one to use in
constructing the control law. Now define an index set I∗ :=
{1, 2, . . . ,m}. For each θ∗ ∈

⋃m
i=1 Si, we define

i∗(θ∗) = min {i ∈ I∗ : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and
simply write i∗. Before proceeding, define s̄ := maxi ‖Si‖.

III. THE ADAPTIVE CONTROLLER

A. Parameter Estimation
Given an estimate θ̂i(t) of θ∗ at time t, we define the

prediction error by

ei(t+ 1) := ȳ(t+ 1)− φ̄(t)>θ̂i(t). (10)

The common way to obtain a new parameter estimate is from
solving the optimization problem

argmin
θ

{
‖θ − θ̂i(t)‖ : ȳ(t+ 1) = φ̄(t)>θ

}
,

yielding the original projection algorithm

θ̂i(t+ 1) =

{
θ̂i(t) if φ̄(t) = 0

θ̂i(t) + φ̄(t)

‖φ̄(t)‖2 ei(t+ 1) otherwise.
(11)

Of course, if ‖φ̄(t)‖ is close to zero, numerical problem can
occur, so it is the norm in the literature (e.g. see [5] and [4])
to add a constant to the denominator; however as pointed out

2Nice in the sense that it is computationally easy to project onto it.

in [10] and [11], this can lead to losing exponential stability
and a bounded gain on the noise. To address this issue, as
proposed in [11], with δ ∈ (0,∞] we turn off the estimator
if the update is larger than 2s̄ + δ; first define

ρi
(
t) :=

{
1 if |ei(t+ 1)| < (2s̄ + δ)‖φ̄(t)‖
0 otherwise.

Then, with the function Proj
Si
{·} : R2n+1 → Si denoting the

projection onto the set Si, estimator updates are calculated
as follows3:

θ̌i(t+ 1) = θ̂i(t) + ρi(t)×
φ̄(t)

‖φ̄(t)‖2
ei(t+ 1) (12a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (12b)

Because the set Si is closed and convex, the projection
function is well-defined.

Define the parameter estimation error θ̃i(t) := θ̂i(t)− θ∗.
The following lists properties of the estimation algorithm
(12); these properties are the combined version of Proposi-
tions 1 and 3 of [11].

Proposition 2. For every t0 ∈ Z, t2 > t1 ≥ t0,
φ̄(t0) ∈ R2n+1, y∗ ∈ R, θ̂i(t0) ∈ Si (i = 1, 2, . . . ,m),
θ∗ ∈ S̄, and w ∈ `∞, when the estimation algorithm
in (12) is applied to (9), the following holds:
(i) For every estimator, we have

‖θ̂i(t2)− θ̂i(t1)‖ ≤
t2−1∑
j=t1

ρi(j)×
|ei(j + 1)|
‖φ̄(j)‖

.

(ii) For the correct estimator we have

‖θ̃i∗(t2)‖2 ≤ ‖θ̃i∗(t1)‖2+
t2−1∑
j=t1

ρi∗(j)×
[
−1

2

ei∗(j + 1)2

‖φ̄(j)‖2
+ 2

w̄(j)2

‖φ̄(j)‖2

]
.

B. Switching Control Law
The elements of θ̂i(t) can be partitioned naturally as

θ̂i(t) =: [ˆ̄ai,1(t) · · · ˆ̄ai,n+1(t) b̂i,1(t) b̂i,2(t) · · · b̂i,n(t)]>;

associated with these estimates are the polynomials

ˆ̄Ai(t, z
−1) := 1 − ˆ̄ai,1(t)z−1 − ˆ̄ai,2(t)z−2 · · · − ˆ̄ai,n+1(t)z−(n+1),

B̂i(t, z
−1) := b̂i,1(t)z−1 + b̂i,2(t)z−2 · · · + b̂i,n(t)z−n.

Next we design a (n + 1)th-order strictly proper controller;
we choose the following polynomials

L̂i(t, z
−1) = 1+l̂i,1(t)z−1+l̂i,2(t)z−2+· · ·+l̂i,n(t)z−n,

P̂i(t, z
−1) = p̂i,1(t)z−1+p̂i,2(t)z−2+· · ·+p̂i,n+1(t)z−(n+1)

to place all closed-loop poles at z = 0:

ˆ̄Ai(t, z
−1)L̂i(t, z

−1) + B̂i(t, z
−1)P̂i(t, z

−1) = 1. (13)

3In case of δ =∞, we will adopt the understanding that ∞× 0 = 0, in
which case this formula collapses to the original projection algorithm (11).
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Given the assumption that the ˆ̄Ai(t, z
−1) and B̂i(t, z−1) are

coprime, we know that there exist unique L̂i(t, z
−1) and

P̂i(t, z
−1) which satisfy this equation; it is also easy to prove

that the coefficients of L̂i(t, z−1) and P̂i(t, z−1) are analytic
functions of θ̂i(t) ∈ Si. For a suitable choice of i ∈ I∗ at
time t, we define the control input by

L̂i(t− 1, z−1)Ū(z) = −P̂i(t− 1, z−1)Ȳ (z). (14)

This can be written in terms of the state vector: to proceed
we define the control gains K̂i(t) ∈ R2n+1:

K̂i(t) :=
[
−p̂i,1(t) · · · −p̂i,n+1(t) −l̂i,1(t) · · · −l̂i,n(t)

]
(15)

so that (14) becomes

ū(t) = K̂i(t− 1)φ̄(t− 1).

We will use a switching signal σ : Z→ I∗ which determines
the index i at any given point in time.

In our earlier work [11], we considered the problem
of closed-loop stability (but not tracking) in the case of
switching between 2 estimators. Unfortunately, the approach
does not extend in a simple way to the case of m > 2
estimators, so we will need a new algorithm. Our closed-
loop system behavior will in large part be determined by a
time-varying matrix Aσ(t)(t) ∈ R(2n+1)×(2n+1); at all times
this matrix will be deadbeat, i.e. all of its eigenvalues will
be at zero. However, its product

Aσ(t)(t)×Aσ(t−1)(t− 1)× · · · × Aσ(t0)(t0), t ≥ t0

will not usually be deadbeat. A natural solution to this
problem is to update the estimators every 2n + 1 steps; the
problem with this idea is that we end up with no information
about ei(t + 1) between the updates, so the closed-loop
system is not amenable to analysis. So our solution procedure
will need to be different: we update σ(t) only every N ≥
2n + 1 steps; however, we keep the estimators running and
the control gains updating. To this end, we define a sequence
of switching times as follows: we initialize t̂0 := t0 and then
define

t̂` := t0 + `N, ` ∈ N.

So the switching signal is set as

σ(t) = σ(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+. (16)

We now define the control law as

ū(t) = K̂σ(t−1)(t− 1)φ̄(t− 1), t > t0; (17)

and from (4), the plant control input is

u(t) = ū(t) + u(t− 1), t > t0. (18)

What remains to be defined is the choice of the switching
signal σ(t̂`), which we will do in the next subsection.

C. Switching Algorithm

Define the set of switching times as TN :={
t̂` ≥ t0 : t̂` = t0 + `N, ` ∈ Z+

}
. To proceed , we define a

performance signal Ji : TN → R+ for each estimator i ∈ I∗;

for ` ∈ Z+, we define

Ji(t̂`) :=

t̂`+1−1∑
j=t̂`

ρi(j)×
|ei(j + 1)|
‖φ̄(j)‖

; (19)

this quantity is an upper bound on the amount of change in
θ̂i(t) on the interval [t̂`, t̂`+1). Clearly, the estimator with the
least amount of update should be the best one, which will
lead to a switching signal of the form

σ(t̂`+1) = argmin
i∈I∗

Ji(t̂`).

Although this rule works in every simulation that we try,
the proof remains elusive; a potential problem is that the
switching signal could oscillate between two bad choices,
and never (or rarely) choose a “correct” one. Instead, we
propose a different approach. At each switching time t̂` we
have an admissible set I(t̂`): we initialize I(t̂0) = I∗, and
we obtain I(t̂`+1) from I(t̂`) by removing all j ∈ I(t̂`)
satisfying

Jσ(t̂`)(t̂`) ≤ Jj(t̂`);

clearly j = σ(t̂`) satisfies this bound, but more j’s may as
well; if this results in I(t̂`+1) being empty, then we reset
I(t̂`+1) to be I∗. This Switching Algorithm is summarized
in the following: with σ(t̂0) = σ0 and I(t̂0) = I∗, for ` ∈
Z+:

Î(t̂`) =
{
i ∈ I∗ : Ji(t̂`) < Jσ(t̂`)(t̂`)

}
, (20a)

I(t̂`+1) =

{
I∗ if I(t̂`) ∩ Î(t̂`) = ∅
I(t̂`) ∩ Î(t̂`) otherwise,

(20b)

σ(t̂`+1) = argmin
i∈I(t̂`+1)

Ji(t̂`), (20c)

i.e. we keep all models in the admissible index set for which
the performance signal is better (i.e. smaller) than the one
we are currently using.

Lemma 1. Consider the plant (9), and suppose that
the controller (12) and (15)–(20) is applied. Then for
every t0 ∈ Z, y∗ ∈ R, σ0 ∈ I∗, φ̄(t0) ∈ R2n+1, θ∗ ∈ S̄,
N ≥ 1, θ̂i(t0) ∈ Si (i ∈ I∗), and w ∈ `∞, if t̂` and t̂¯̀
are two consecutive reset times of the index set, then
there exists a `∗ ∈ [`, ¯̀) such that:

Jσ(t̂`∗ )(t̂`∗) ≤ Ji∗(t̂`∗).

In the above we do not make any claim that θ∗ ∈ Sσ(t)

at any time; it only makes an indirect statement about the
size of the prediction error. It turns out that this is enough
to ensure that desired closed-loop behavior is attained.

IV. THE MAIN RESULT

In most adaptive controllers the goal is to prove asymptotic
results, so details of initial conditions is not important.
However, we want to get a bound on the transient behavior.
With a starting time of t0, define the initial condition as

φ0 :=
[
y(t0) · · · y(t0 − n) u(t0) · · · u(t0 − n)

]>
.
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Theorem 1. Consider the nth-order plant (1) satisfying
Assumptions 1 and 2 with the corresponding {Si}mi=1

satisfying the conditions of Proposition 1. Suppose that
the controller (12), (15)–(20) is applied. For every λ ∈
(0, 1), δ ∈ (0,∞] and N ≥ 2n + 1, there exists a
constant γ > 0 such that for every t0 ∈ Z, φ0 ∈ R2n+2,
σ0 ∈ I∗, θ∗ab ∈ S, θ̂i(t0) ∈ Si (i ∈ I∗), y∗ ∈ R and
w ∈ `∞, the following holds

‖φ(t)‖ ≤ γλt−t0‖φ0‖+ γ|y∗|+ γ
t−1∑
j=t0

λt−1−j |w(j)|, t ≥ t0;

furthermore, if w(·) is constant, then

lim
t→∞

y(t) = y∗.

The above result shows that the closed-loop system expe-
riences linear-like behavior. There is a uniform exponential
decay bound on the effect of the initial condition, and a
convolution sum bound on the effect of the noise. This
implies that the system has a bounded gain (from w and
y∗ to y) in every p-norm: for p = ∞, we can see from the
above bound that

‖φ(t)‖ ≤ γ(‖φ0‖+ |y∗|) +
γ

1− λ
sup

j∈[t0,t)

|w(j)|.

We emphasize here that we are able to show the result
using a switching control law without assuming that the
switching stops. As far as the authors know, only a few
similar results are found in the literature, e.g. Morse [14]
and [2], although convolution bounds are not proven.

Proof of Theorem 1. Due to space limitation, only a brief
sketch of the proof is outlined here. The proof uses similar,
but not identical, analysis to that used in [22] and [11, Sec.
8], which, in turn, is based on the analysis in [10]. Recalling
the compactness of the Si’s and the definition of switching
times t̂`, the steps of the proof go as follows:

1) first, from (10) and (17) we obtain a state-space
equation describing φ̄(t) which holds on intervals of
the form [t̂`, t̂`+1);

2) second, utilizing the deadbeat nature of the equation,
the nature of the estimation process and Proposition
2(i), we analyze this equation to get a bound on
‖φ̄(t̂`+1)‖ in terms of ‖φ̄(t̂`)‖;

3) applying Lemma 1, we obtain a bound on φ̄ between
index set resets of the Switching Algorithm (20);

4) next, by Proposition 2(ii) and Lemma 2 of [10], we
analyze the associated difference inequality, relating
the behavior between index set resets, to obtain a
general bound on φ̄(t);

5) from the previous step, we directly get a bound on y
and prove asymptotic tracking. We then obtain a bound
on u based on the observability of all admissible plants
(Assumption 1) to then finally get the desired bound
on φ(t). �

Remark 2. Utilizing the linear-like convolution bounds
found in Theorem 1, the result can be extended to prove tol-

erance to parameter time-variation & unmodelled dynamics;
the proof uses the same approach as the proofs of Theorem
2 and 3 in [11] for the case of a convex uncertainty set.

V. A SIMULATION EXAMPLE

In this section, a simulation example is provided to illus-
trate the results of this paper. Consider the 2nd-order plant:

y(t+ 1) = a1(t)y(t) + a2(t)y(t− 1)+

b1(t)u(t) + b2(t)u(t− 1) + w(t)

with parameters belonging to the uncertainty set S:

S :=

{[
a1 a2 b1 b2

]> ∈ R4 :

a1 ∈ [−2, 0], a2 ∈ [−3,−1], b1 ∈ [−1, 0], b2 ∈ [−5,−3] ∪ [3, 5]

}
.

Hence, every admissible model is unstable and non-minimum
phase, which makes this plant challenging to control; it has
two complex unstable poles together with a zero that can lie
in [3,∞). It is also obvious to see that S is not a convex
set; notice that the convex hull of it includes the case of
having b1 = b2 = 0, which corresponds to a non-stabilizable
system, violating the coprimeness assumption. So, we apply
the proposed approach in this paper.

We define the set S̄ by (8); so we will be esti-
mating the parameters of the auxiliary plant: θ∗(t) =[
ā1(t) ā2(t) ā3(t) b1(t) b2(t)

]> ∈ S̄. We know that
the set S̄ is also compact and satisfies the coprimeness
requirement; we will need to find a set of convex and
compact sets that their union contains S̄ and that will also
satisfy the coprimeness requirement. We define

S1 :=

{[
ā1 ā2 ā3 b1 b2

]> ∈ R5 :

ā1 ∈ [−1, 1], ā2 ∈ [−3, 1], ā3 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [−5,−3]

}
,

S2 :=

{[
ā1 ā2 ā3 b1 b2

]> ∈ R5 :

ā1 ∈ [−1, 1], ā2 ∈ [−3, 1], ā3 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [3, 5]

}
.

Each of the sets S1 and S2 is a hyperrectangle, which is easy
to project onto; we easily see that S̄ ⊂ S1 ∪ S2 . We can
also verify that each of S1 and S2 contain models that are
coprime, as desired.

For this simulation we set a1 = − 1
2 , a2 = − 3

2 , b1 = − 3
4 ,

and b2 = −3. We will apply the proposed controller (12) and
(15)–(20); we choose N = 5 and δ =∞. We set the desired
set-point y∗ = 2, and initial condition y(0) = y(−1) =
y(−2) = −1 and u(−1) = u(−2) = 0; we also set θ̂1(0) =[
0 −1 2 − 1

2 −4
]>

, θ̂2(0) =
[
0 −1 2 − 1

2 4
]>

and σ0 = 2. We set the disturbance to be of a constant
magnitude: |w(t)| = 1

2 , but with its sign changing every
250 steps. Figure 1 displays the results. We see that the
controller does a good job of tracking; the closed-loop system
experiences some transient behavior when the disturbance
changes, but the tracking recovers quickly.
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Fig. 1. The top plot shows the tracking error ȳ; the middle plot shows the
disturbance w; the bottom plot shows the switching signal σ (solid) and the
correct index i∗ (dashed).

VI. CONCLUSION

In this paper, we consider the problem of step-tracking of
an nth-order plant with unknown plant parameters belonging
to a compact uncertainty set; no assumption of convexity
is imposed. We cover the set of admissible parameters
by a finite set of compact and convex sets, and use a
projection-algorithm-based parameter estimator for each one.
A switching algorithm is used to determine which estimates
are used at each point in time. We prove that this adaptive
controller guarantees linear-like convolution bounds on the
closed-loop behavior, which implies exponential stability and
a bounded noise gain; this is rarely found in the literature.
Furthermore, when the noise is constant, we prove that
asymptotic tracking is achieved.

We would like also to extend the approach to the tracking
of more general reference signals, and to include cases where
the order of the plant is unknown.

APPENDIX

Proof of Proposition 1. Fix µ > 0. For every x ∈ S̄, let
Ox ⊂ R2n+1 denote the open ball of radius µ centered at
x. Then {Ox : x ∈ S̄} is an open cover of S̄, so by the
Heine-Borel Theorem [21] there exist x1, x2, . . . , xm so that
S̄ ⊂

⋃m
i=1Oxi . If we set Si := closure of Oxi , then (i) and

(ii) of the required properties hold.
If Ā(z−1) and B(z−1) are the corresponding polynomials

associated with x ∈ R2n+1, then let S(x) ∈ R(2n+1)×(2n+1)

denote the Sylvester Matrix associated with the pair of
polynomials (see [5, p. 482]). By the coprimeness require-
ment, we know that minθ̄∈S̄ |detS(θ̄)| > 0. As detS(x) is
continuous in x, if a small enough µ > 0 is used in the
procedure (of the previous paragraph) to construct the Si’s,
we conclude that minθ∈

⋃m
i=1Si |detS(θ)| > 0. �
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