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Asymptotic Tracking and Linear-like Behavior
Using Multi-Model Adaptive Control

Mohamad T. Shahab and Daniel E. Miller

Abstract— In this paper, we consider the problem of
tracking for a discrete-time plant with unknown plant pa-
rameters; we assume knowledge of an upper bound on
the plant order, and for each admissible order we assume
knowledge of a compact set in which the plant parameters
lie. We carry out parameter estimation of an associated
auxiliary model; indeed, for each admissible dimension,
we cover the set of admissible parameters by a finite
number of compact and convex sets and use an original-
projection-algorithm-based estimator for each set. At each
point in time, we employ a switching algorithm to determine
which model and parameter estimates are used in the pole-
placement-based control law. We prove that this adaptive
controller guarantees desirable linear-like closed-loop be-
havior: exponential stability, a bounded noise gain in every
p-norm, a convolution bound on the effect of the exogenous
inputs, as well as exponential tracking for certain classes
of reference and noise signals; this linear-like behavior is
leveraged to immediately show tolerance to a degree of
plant time-variations and unmodelled dynamics.

I. INTRODUCTION
Adaptive control is an approach used to deal with systems

with uncertain or time-varying parameters. The classical adap-
tive controller consists of a linear time-invariant compensator
together with a tuning mechanism to adjust the compensator
parameters to match the plant; the tuning mechanism often
consists of a plant parameter estimator together with a for-
mula to yield the compensator parameters. The first general
results of adaptive control came about around 1980, e.g. [14],
[16], [35], [39] and [40]. However, these controllers typically
do not tolerate unmodeled dynamics, time-variations, and/or
noise/disturbances very well, see e.g. [44]; furthermore, they
put stringent assumptions on a priori information about the
plant. Over the following two decades, there was a good deal
of effort to address these shortcomings. A common approach
was to make small controller design changes, such as the use
of σ-modification, signal normalization, or a deadzone, e.g.
see [21], [28], [24], and [29]; another approach imposes a
convexity assumption on the set of admissible parameters,
which is utilized in the estimation process to restrain the
estimates of the plant parameters to the convex set, e.g. see
[38], [53], [52], [51], and [27]. Although these controllers
provide a degree of tolerance to noise, unmodelled dynamics
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and/or slow time-variations, in general, they do not provide
exponential stability nor a bounded noise gain1; clearly, it is
desirable that the closed-loop system exhibits such linear-like
properties. While we can prove a form of exponential stability
if a persistent excitation condition is satisfied, e.g. see [2], this
places a stringent requirement on exogenous inputs, which we
would like to avoid.

There are various non-classical approaches to adaptive con-
trol that provide some linear-like system properties, like those
that include multiple estimators, multiple controller designs
and/or a switching mechanism.

(i) Pre-routed switching between a list of candidate con-
trollers was used in [15] and [32]; while exponential stability is
proven, a bounded gain on the noise is not proven and transient
behavior can be poor.
(ii) Supervisory Control [36], [37], [11], [20], [19] and [50]

provides a more efficient way to switch between candidate
controllers and is shown to provide more desirable properties;
however, the complexity of the approach grows with the size
of plant uncertainty. In certain circumstances a bounded gain
on the noise is proven, and some progress has been made to
deal with time-variation, e.g. see [50], though crisp bounds on
closed-loop behavior are not proven.

(iii) Another approach which utilizes multi-controllers is
based on the concept of unfalsified control–see [45], [49], [8],
[6], [10] and [9]; the goal here is to switch any destabilizing
controller out of the loop completely. In [9], time-varying
plants are considered as well. In some cases, an ISS-type of
stability is proven.

(iv) A different falsification-based approach is discussed in
[54] proving exponential stability and some form of tolerance
to noise; however, a bounded gain on the noise is not proven.
(v) Another family of non-classical approaches are ones that

use multiple parallel parameter estimators, like in [41], [42];
here a switching algorithm is used to choose which parameter
estimate to use in the control law; however, exponential
stability is not explicitly proven.

(vi) In a closely-related approach to the previous one, a
weighted combination of multiple controllers is used, e.g. [26],
[7] and [5], or a weighted combination of multiple parameter
estimates is used, e.g. [43] and [18]; while improvement in
closed-loop behavior is shown, convexity of the uncertainty
set is strictly assumed.
(vii) There are also Lyapunov-based approaches to switching

adaptive control which provide some form of exponential
stability, e.g. [12], and bounded-input bounded-state behavior,
e.g. [3] and [4]; however, a priori knowledge of suitable

1An exception is the work of Ydstie [53]: a bounded gain is proven, but a
crisp bound on the effects of the initial condition is not provided.
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Lyapunov functions is required as part of the controller.
In all of these approaches, a linear-like convolution bound on
the closed-loop behavior is not proven.

Recently, an approach was developed which guarantees a
linear-like convolution bound on the closed-loop behavior, in
both the one-step-ahead control setting [30] and [34], and in
the pole-placement control setting [31] and [33]; this yields
exponential stability as well as a bounded gain on the noise (in
every p-norm); this linear-like behavior is leveraged to imme-
diately show tolerance to a degree of plant time-variations and
unmodelled dynamics. As far as the authors know, such linear-
like bounds have never before been proven in the adaptive
setting. The key idea is to employ an estimator based on the
original (ideal) Projection Algorithm together with projection
of the parameter estimates onto a given compact and convex
set. In [33], the convexity assumption is weakened slightly
(without completely removing it) and stability is proven, but
not tracking. In [47], the same linear-like result is proven
without any convexity assumption but only for the case of
1st-order one-step-ahead adaptive control.

In this paper, we consider the problem of tracking the sum
of a finite number of sinusoids of known frequency in the
presence of plant uncertainty. We assume knowledge of an
upper bound on the plant order, and for each admissible order
we assume knowledge of a compact set in which the plant
parameters lie; although we impose some natural technical
assumptions on the sets, we do not assume that they are
convex. To facilitate the tracking requirement, rather than
directly estimating the plant parameters, we instead estimate
the parameters of a suitably defined auxiliary plant model.
We use the compactness of the parameter uncertainty set for
each admissible order to prove that it is contained in a finite
union of compact and convex sets; we construct a parameter
estimator for each of these compact and convex sets, based
on the original projection algorithm. A switching algorithm is
used to determine which estimates are used in the controller
at a given point in time. We prove that the desired linear-
like convolution bounds are achieved, and if the reference
and disturbance signals belong to the aforementioned class of
sinusoids then the tracking error goes exponentially to zero.
We would like to point out that a preliminary version of this
paper appears in [48]; however, it deals only with the problem
of step tracking with a known plant order, and no proofs are
provided.

We now provide an outline of the paper. In Section II, we
discuss the unknown plant, the auxiliary plant to be used
for estimation, and the uncertainty sets. We introduce the
multi-model adaptive controller consisting of the estimator,
the control law, and the switching algorithm in Section III.
In Section IV we provide the main result of the paper,
which shows that the closed-loop behavior satisfies the desired
convolution bound, and exponential tracking for certain classes
of reference and noise signals is provided. In Section V, we
show, briefly, that this result holds in the presence of plant
time-variations and unmodelled dynamics. We will provide
an illustrative simulation example in Section VI. Finally,
summary and conclusions are provided in Section VII.

Notation. We use standard notation throughout the paper.

We denote R, R+, Z, Z+ and N as the set of real num-
bers, nonnegative real numbers, integers, nonnegative integers
and natural numbers, respectively. Let d·e denote the ceiling
function. We will denote the Euclidean-norm of a vector and
the induced norm of a matrix by the subscript-less default
notation ‖ · ‖. For a square matrix A, let det

(
A
)

denote
the determinant of A. Also, `∞(Rp) denotes the set of Rp-
valued bounded sequences; we use the simple notation of `∞
to denote the special case of `∞(R). For a signal f ∈ `∞,
define the ∞-norm by ‖f‖∞ := supt∈Z |f(t)|. For a closed
and convex set Ω ⊂ Rp, let the function Proj

Ω
{·} : Rp 7→ Ω

denote the projection onto the set Ω; because the set Ω
is closed and convex, the function Proj

Ω
is well-defined. If

Ω ⊂ Rp is a compact (closed and bounded) set, we define
‖Ω‖ := maxx∈Ω ‖x‖. Define the normal vector ej ∈ Rp of
appropriate length p as

ej :=
[j−1 elements︷ ︸︸ ︷
0 · · · 0 1 0 · · · 0

]>
.

Let 0p×q and 0p denote the p× q matrix and the p× 1 vector
whose entries are all zeros, respectively. Let Ip denote the
identity matrix of size p.

II. THE SETUP

A. The Plant
We consider the nth-order linear time-invariant discrete-time

plant

y(t+ 1) =

n∑
j=1

ajy(t− j + 1) +

n∑
j=1

bju(t− j + 1) + w(t),

t ∈ Z, (1)

with y(t), u(t), w(t) ∈ R denoting the measured output, the
control input, and the disturbance/noise input, respectively.
Such a plant can be expressed in the (two-sided) z-transform
form as

A(z−1)Y (z) = B(z−1)U(z) + z−1W (z), (2)

with the corresponding polynomials defined as

A(z−1) := 1− a1z
−1 − a2z

−2 · · · − anz−n, and

B(z−1) := b1z
−1 + b2z

−2 · · ·+ bnz
−n,

with Y (z), U(z) and W (z) denoting the z-transform of
y(t), u(t) and w(t), respectively. The plant can be represented
by the strictly proper transfer function B(z−1)

A(z−1) . We can repre-
sent the plant model by the vector of parameters

θ =
[
a1 a2 · · · an b1 b2 · · · bn

]> ∈ R2n.

The objective is to control the system when θ is unknown
but lies in a set of admissible parameters. Since our goal is
to provide uniform bounds, we shall require that this set be
compact; unlike in our earlier work [33], we will not insist on
convexity. Since we will be using a pole-placement approach,
we will require that znA(z−1) and znB(z−1) be coprime.
Indeed, it turns out that our approach works if the plant order
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n is not known exactly, but rather we have an upper bound n̄
on n. To this end, for each n ∈ {1, 2, . . . , n̄} we let

Θn ⊂ R2n

denote the set of admissible parameters, and impose

Assumption 1. For every n ∈ {1, 2, . . . , n̄}:
(1) the set Θn is compact2 and
(2) for every θ ∈ Θn, the corresponding polynomials
znA(z−1) and znB(z−1) are coprime.

B. The Control Objective
The objective is to prove an exponential form of stability,

a convolution bound on the noise and on a general reference
signal, and tracking (and disturbance rejection) of the sum of a
finite number of sinusoids of known frequency. To characterize
this class, we use the standard approach in the literature, e.g.
see Goodwin and Sin [17, pp. 155-157]. Let y∗(t) ∈ R be the
reference signal. If the goal is to track reference signals which
are a weighted sum of sinusoids with distinct frequencies of
{ω1, ω2, . . . , ωg1

} ⊂ (0, π), then define

Q(z−1) :=

g1∏
p=1

[(1− ejωpz−1)(1− e−jωpz−1)];

if we wish to track set-points as well, then multiply this by 1−
z−1, and if we wish to track signals of the form (−1)t as well,
then multiply this by 1+z−1; we label the resulting polynomial
Q1(z−1). So in the z-domain, this class of reference signals
is described by

Q1(z−1)Y ∗(z) = 0,

with Y ∗(z) as the z-transform of y∗(t). In a similar way,
we can form a (possibly different) polynomial Q2(z−1) with
distinct roots on the unit circle so that the class of disturbances
to be rejected is described by

Q2(z−1)W (z) = 0.

The gth-order polynomial

Q(z−1) = 1− q1z
−1 − q2z

−2 · · · − qgz−g (3a)

:= least common multiple of
{
Q1(z−1),Q2(z−1)

}
(3b)

will be used in the controller synthesis. Note that if the goal is
only stability (without tracking or disturbance rejection), then
Q(z−1) = 1.

As we know from classical continuous-time control, if the
plant has a zero at the origin then we cannot design an LTI
stabilizing controller which ensures that the plant tracks steps.
To this end, we impose the following natural assumption:

Assumption 2. For each n ∈ {1, 2, . . . , n̄} and θ ∈ Θn,
the corresponding polynomial znB(z−1) and the polynomial
zgQ(z−1) are coprime.

Remark 1. Here we allow the plant to have zeros outside the
open unit desk as long as they are not roots of zgQ(z−1).
Hence, the plant could be unstable and non-minimum phase,
which makes it challenging to control.

2It could very well be that Θn is empty for some n.

C. The Auxiliary Plant
If n is known and the set of admissible parameters Θn

is convex, then the classical approach is to carry out system
identification of the plant in the usual way, e.g. [17], and
design the pole-placement based control law in such a way as
to force an “internal model of Q(z−1)” into the controller; this
has been shown to be quite effective in classical approaches
which prove asymptotic stability, e.g. see [17], as well as in
our recent work [33] where we prove exponential stability and
step tracking. If, however, the set of admissible parameters is
not convex, which can be the case here, the standard trick is to
replace it with its closed convex hull. Unfortunately, often that
set will contain models that violate coprimeness, so we need
another approach. The compactness of the set of admissible
parameters can be utilized to easily prove that it is contained in
a finite union of convex sets with desirable properties; we can
then use an estimator for each convex set and from time to time
switch between estimates for use in the control law. We have
extended our approach of [33] to the case of multi-estimators:
we can achieve exponential stability and a convolution bound
on the effect of the exogenous signals, but we have failed
to prove asymptotic tracking (although it could very well be
true). This is due, in large part, to the fact that the approach
does not rule out persistent switching3. We will deal with this
difficulty by doing system identification on a related auxiliary
plant model rather than the original plant model.

With y∗, w ∈ `∞, let us define the tracking error ε by

ε(t) := y(t)− y∗(t); (4)

also define an auxiliary control input v(t) ∈ R and its z-
transform counterpart by

V (z) := Q(z−1)U(z) (5a)
⇔ v(t) = u(t)− q1u(t− 1)− · · · − qgu(t− g). (5b)

If we multiply both sides of the z-transformed counterpart of
the plant model (2) by Q(z−1) and use the definition in (5),
then we end up with

Q(z−1)A(z−1)Y (z) = B(z−1)V (z) + z−1Q(z−1)W (z);

denoting the z-transform of ε(t) by E(z), if we subtract
Q(z−1)A(z−1)Y ∗(z) from both sides of the above equation
then we obtain the auxiliary plant model

Q(z−1)A(z−1)︸ ︷︷ ︸
=:Ā(z−1)

E(z) = B(z−1)V (z)+

z−1 Q(z−1)
[
W (z)− zA(z−1)Y ∗(z)

]︸ ︷︷ ︸
=:W̄ (z)

, (6)

or in other words

Ā(z−1)E(z) = B(z−1)V (z) + z−1W̄ (z). (7)

To proceed, we now examine the polynomial Ā(z−1) care-
fully; we have

Ā(z−1) =: 1− ā1z
−1 − ā2z

−2 · · · − ān+gz
−(n+g)

3Persistent switching is also not ruled out in the approaches of [4], [9],
[10], [36] and [37].
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= Q(z−1)A(z−1) =

1−
g∑
j=1

qjz
−j

1−
n∑
j=1

ajz
−j

 ;

it is easy to see that there exists a matrix V(Q, n) ∈
R(n+g)×(n+1), depending solely on Q(z−1), so that we can
rewrite Ā(z−1) as

Ā(z−1) = 1−
[
z−1 z−2 · · · z−(n+g)

]
V(Q, n)


1
a1
a2
...
an

.
We see that the parameters of Ā(z−1) are determined in a
simple way from those of A(z−1). Indeed, for each pair of n
and Q(z−1), we can form a matrix V̄(Q, n) ∈ R(2n+g)×(2n+1)

defined by

V̄(Q, n) :=

[
V(Q, n)

In

]
(8)

so that the parameters of Ā(z−1) and B(z−1) of (7) are given
by

V̄(Q, n)



1
a1
...
an
b1
...
bn


=



ā1
ā2
...

ān+g

b1
...
bn


=: θ∗.

So the set of admissible parameters of (7) is given by

Θ̃n :=

{
V̄(Q, n)

[
1
θ

]
: θ ∈ Θn

}
⊂ R2n+g. (9)

Using this notation, the auxiliary plant (7) can now be put into
regressor form:

ε(t+ 1) = ψ(t)>θ∗ + w̄(t), (10)

with w̄(t) as the inverse z-transform of W̄ (z), ψ(t) ∈ R2n+g

defined as

ψ(t) :=
[
ε(t) ε(t− 1) · · · ε(t− n− g + 1)

v(t) v(t− 1) · · · v(t− n+ 1)
]>

and θ∗ ∈ Θ̃n. As in the case of the original plant (1), the
order is not known, though it is known that n ∈ {1, 2, . . . , n̄};
hence, while the dimension of ψ(t) clearly depends on n, to
enhance readability this will not be made explicit.

Remark 2. Carrying out system identification on the auxiliary
plant (10), instead of the original plant (1), makes it easier to
analyze and prove asymptotic tracking. The reason is simple:
the tracking error is a sub-state of the regression vector of (10)
but not of (1). That being said, the proof is quite involved (see
Theorem 1 and Proposition 3).

D. Uncertainty sets
Since for every n ∈ {1, 2, . . . , n̄}, Θn is compact, it follows

that Θ̃n is as well; also, because of Assumptions 1 and 2 we
see that for every θ∗ ∈ Θ̃n, the corresponding polynomials
zn+gĀ(z−1) and znB(z−1) are coprime. Of course, if we

were to replace Θ̃n by its convex hull, then those properties
may fail to hold. This brings us to the following result. We
show that for any n ∈ {1, 2, . . . , n̄}, Θ̃n can be approximated
by a finite number of convex sets with desired properties.

Proposition 1. For every n ∈ {1, 2, . . . , n̄} and µ > 0, there
exist a finite number of convex, compact sets Θ̃i

n ⊂ R2n+g

(i = 1, 2, . . . ,mn) that satisfy

(i) Θ̃n ⊂
mn⋃
i=1

Θ̃i
n,

(ii) for every θ∗ ∈
⋃mn

i=1 Θ̃i
n there exists a θ̃∗ ∈ Θ̃n that

satisfy ‖θ̃∗ − θ∗‖ ≤ µ.
Furthermore, if µ > 0 is sufficiently small, then we can

choose the Θ̃i
n’s to have an additional property as well:

(iii) for every θ∗ ∈
⋃mn

i=1 Θ̃i
n, the corresponding pair of

polynomials zn+gĀ(z−1) and znB(z−1) are coprime.
Proof. This is equivalent to Proposition 1 in [48]; the proof
is there, where it utilizes the Heine-Borel Theorem. �

In general, finding a set of mn Θ̃i
n’s which satisfy the

desired properties of Proposition 1 for which mn is small
and Θ̃i

n has “nice4 structure” is not easy. However, this is
not the focus of our paper. This covering problem is an open
research problem—e.g. see [1], [13] and [23]. So at this
point we assume that this process has been done for each
n ∈ {1, 2, . . . , n̄}; we will show an example on how to do
this in Section VI.

The idea here is to use a parameter estimator for each
compact and convex set, and at each point in time we choose
which one to use in constructing the control law. At this point,
for every n ∈ {1, 2, . . . , n̄} we have at hand mn compact
and convex parameter uncertainty sets (they can be disjoint or
overlapping) that correspond to models of nth-order plants:

Θ̃1
1, Θ̃

2
1, . . . , Θ̃

m1
1 , Θ̃1

2, Θ̃
2
2, . . . , Θ̃

m2
2 , . . . , Θ̃1

n̄, Θ̃
2
n̄ . . . , Θ̃

mn̄
n̄ ,

yielding a total of m := m1 +m2 + · · ·+mn̄ sets. For ease
of notation, we re-label these sets as

Si ⊂ R2ni+g, i = 1, 2, . . . m;

here ni ∈ {1, 2, . . . , n̄} represents the plant order of the
associated model.

Now define the index set

I∗ := {1, 2, . . . ,m}.

For each θ∗ ∈ Si, i = 1, 2, . . . ,m, we define

i∗(θ∗) = min {i ∈ I∗ : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and
simply write i∗. Before proceeding, define s̄ := maxi ‖Si‖.

III. THE MULTI-MODEL ADAPTIVE CONTROLLER
In this section we present the proposed adaptive controller;

we discuss parameter multi-estimators, the associated switch-
ing control law, and the switching algorithm. The proposed
controller is illustrated in the block diagram of the closed-
loop system given in Figure 1.

4Nice in the sense that it is computationally easy to project onto it.
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Estimator 1

Estimator 2

Estimatorm

Controller 1

Controller 2

Controllerm

...

...

Performance
Signal

J1 J2 Jm

· · ·

Switching
Algorithm

θ̂1

θ̂2

θ̂m

1
Q(z−1) Plant

w

v u...

e1

e2

em

...

y

y∗ +

−

σ

ε

Fig. 1. Block diagram of the closed-loop system; enclosed inside
the dashed boxes are the multiple estimators/controllers (blue), and the
switching mechanism (red).

A. Parameter Estimation
First, for each i ∈ I∗, the corresponding regressor vector is

defined by ψi(t) ∈ R2ni+g:

ψi(t) :=
[
ε(t) ε(t− 1) · · · ε(t− ni − g + 1)

v(t) v(t− 1) · · · v(t− ni + 1)
]>
.

So we know that the auxiliary plant (10) can be rewritten as

ε(t+ 1) = ψi∗(t)>θ∗ + w̄(t). (11)

Given an estimate θ̂i∗(t) ∈ Si∗ at time t, we can now define
the prediction error associated with this model by

ei∗(t+ 1) := ε(t+ 1)− ψi∗(t)>θ̂i∗(t). (12)

A common way to obtain the next parameter estimate is to
solve the optimization problem

argmin
θ

{
‖θ − θ̂i∗(t)‖ : ε(t+ 1) = ψi∗(t)>θ

}
yielding the original Projection Algorithm

θ̂i∗(t+ 1) =

{
θ̂i∗(t) if ψi∗(t) = 0

θ̂i∗(t) + ψi∗ (t)
‖ψi∗ (t)‖2 ei∗(t+ 1) otherwise.

Of course, we do not know the value of i∗; so we simply
generalize the above steps by defining

ei(t+ 1) := ε(t+ 1)− ψi(t)>θ̂i(t), i ∈ I∗ (13)

and with θ̂i(t) ∈ Si, we adopt the projection algorithm for
each i ∈ I∗:

θ̂i(t+ 1) =

{
θ̂i(t) if ψi(t) = 0

θ̂i(t) + ψi(t)
‖ψi(t)‖2 ei(t+ 1) otherwise.

(14)

It is common in the literature to modify this algorithm by
adding a positive constant to the denominator of the second
term; while this prevents numerical problems when ψi(t) is
close to zero, when used in an adaptive controller it turns
out that exponential stability is lost—see [33] and [30]. The
concern about numerical issues is addressed in an alternate
way in [33] by turning off the estimation if it is clear that
the noise is swamping the estimation error. Here we do the
same thing; however, to make our proof work, we also redefine

the denominator in the estimation update law. To proceed, we
make three modifications to (14):

1) To restrict θ̂i(t) to Si, after applying the suitably modified
version of (14), we project it onto Si.

2) We define the longest data vector by ψ̄(t) ∈ R2n̄+g:

ψ̄(t) :=
[
ε(t) ε(t− 1) · · · ε(t− n̄− g + 1)

v(t) v(t− 1) · · · v(t− n̄+ 1)
]>

; (15)

observe that ‖ψi(t)‖ ≤ ‖ψ̄(t)‖ for all i. We will replace
ψi(t) by ψ̄(t) in the denominator of (14).

3) By examining (12), we see that

ei∗(t+ 1) = ψi∗(t)>
[
θ∗ − θ̂i∗(t)

]
+ w̄(t), (16)

which means that |ei∗(t + 1)| ≤ 2s̄‖ψi∗(t)‖ + |w̄(t)|. So
if |ei∗(t + 1)| > 2s̄‖ψi∗(t)‖, then the disturbance may be
overwhelming the data, so we turn off the estimator if the
gap is too large.

To this end, with δ ∈ (0,∞] and with ψ̄(t) replacing ψi(t),
we define ρi : Z 7→ {0, 1} by

ρi(t) :=

{
1 if |ei(t+ 1)| < (2s̄ + δ)‖ψ̄(t)‖
0 otherwise, (17)

which is used to determine when to turn off the algorithm;
the larger the value of δ, the larger that we allow w̄(t) to be
(versus ‖ψ̄(t)‖) before we turn off the estimator. This leads
to our proposed “vigilant” estimator: the estimator i updates
are computed as follows:

θ̌i(t+ 1) = θ̂i(t) + ρi(t)
ψi(t)∥∥ψ̄(t)

∥∥2 ei(t+ 1) (18a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (18b)

The function ρi is used to alleviate the concern of dividing
by zero without losing the desired properties of the original
projection algorithm. In the case of δ =∞, we will adopt the
understanding that ∞× 0 = 0, in which case the formula in
(18a) collapses to the original algorithm (14) with ψi in the
denominator replaced by ψ̄ . If δ < ∞, we can be assured
the update term is bounded above by 2s̄ + δ, which alleviates
concerns about having infinite gain.

Define the (correct) parameter estimation error θ̃i∗(t) :=
θ̂i∗(t) − θ∗. The following lists properties of the estimation
algorithm (18). These properties are similar to ones found in
Proposition 1 and 3 of [33]; the difference arises when the
order is unknown, in which case ψi(t) and ψ̄(t) differ for
some i.

Proposition 2. For every n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n,
and every t0 ∈ Z, t2 > t1 ≥ t0, ψ̄(t0) ∈ R2n̄+g , θ̂i(t0) ∈
Si (i ∈ I∗) and w, y∗ ∈ `∞, when the estimation algorithm
in (18) is applied to the corresponding auxiliary plant (10),
the following holds:
1) for every estimator i = 1, 2, . . . ,m,

‖θ̂i(t2)− θ̂i(t1)‖ ≤
t2−1∑
j=t1

ρi(j)
|ei(j + 1)|∥∥ψ̄(j)

∥∥ . (19)
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2) for the correct estimator i∗,

‖θ̃i∗(t2)‖2 ≤ ‖θ̃i∗(t1)‖2+
t2−1∑
j=t1

ρi∗(j)

[
−1

2

ei∗(j + 1)2∥∥ψ̄(j)
∥∥2 + 2

w̄(j)2∥∥ψ̄(j)
∥∥2

]
. (20)

Proof. See the Appendix. �

B. Switching Control Law
For each i, the parameter estimate θ̂i(t) is partitioned

naturally as

θ̂i(t) =:
[
ˆ̄ai,1(t) ˆ̄ai,2(t) · · · ˆ̄ai,ni+g(t)

b̂i,1(t) b̂i,2(t) · · · b̂i,ni
(t)
]>

;

associated with these estimates are the polynomials

ˆ̄Ai(t, z
−1) = 1− ˆ̄ai,1(t)z−1 − ˆ̄ai,2(t)z−2 · · · − ˆ̄ai,ni+g(t)z

−(ni+g),

B̂i(t, z
−1) = b̂i,1(t)z−1 + b̂i,2(t)z−2 · · ·+ b̂i,ni

(t)z−ni .

Next we design a (ni + g)th-order strictly proper controller;
we choose the following polynomials

L̂i(t, z
−1) = 1 + l̂i,1(t)z−1 + l̂i,2(t)z−2 + · · ·+ l̂i,ni

(t)z−ni ,

P̂i(t, z
−1) = p̂i,1(t)z−1+p̂i,2(t)z−2+· · ·+p̂i,ni+g(t)z

−(ni+g)

so as to place all closed-loop poles at z = 0:

ˆ̄Ai(t, z
−1)L̂i(t, z

−1) + B̂i(t, z
−1)P̂i(t, z

−1) = 1. (21)

Since zni+g ˆ̄Ai(t, z
−1) and zniB̂i(t, z

−1) are coprime by
design, we know that there exist unique L̂i(t, z

−1) and
P̂i(t, z

−1) which satisfy this equation—see [22, Theorem
2.3.1]; this entails solving a linear equation. It is also easy
to prove that the coefficients of L̂i(t, z

−1) and P̂i(t, z
−1) are

analytic functions of θ̂i(t) ∈ Si. For a suitable choice of i ∈ I∗
at time t, we define the control input by

L̂i(t− 1, z−1)V (z) = −P̂i(t− 1, z−1)E(z). (22)

This can be written in terms of the data vector ψi(t): to this
end, we define the control gains K̂i(t) ∈ R2ni+g by

K̂i(t) :=
[
−p̂i,1(t) −p̂i,2(t) · · · −p̂i,ni+g(t)

−l̂i,1(t) −l̂i,2(t) · · · −l̂i,ni
(t)
]

(23)

so that (22) becomes

v(t) = K̂i(t− 1)ψi(t− 1).

We will use a switching signal σ : Z→ I∗ to denote the index
i: σ(t) denotes the index of the controller to use at time t.

In our earlier work [33], we considered the problem of
closed-loop stability (but not tracking) in the case of switching
between 2 estimators of the same dimension. Unfortunately,
the approach does not extend in a simple way to the case of
m > 2 estimators, so we will need a different algorithm. As
we will soon see, our closed-loop system behavior will in large
part be determined by a time-varying matrix Aσ(t)(t) ∈ R2n̄+g

(see (38)); at all times this matrix will be deadbeat, i.e. all of
its eigenvalues will be at zero. However, its product

Aσ(t)(t)×Aσ(t−1)(t− 1)× · · · × Aσ(t0)(t0), t ≥ t0

will not usually be deadbeat. A natural solution to this problem
is to update the estimators every 2n̄ + g steps; the problem
with this idea is that we end up with no information about
ei(t + 1) between the updates, so the closed-loop system is
not amenable to analysis. So our solution procedure will need
to be different: we update σ(t) only every N ≥ 2n̄+ g steps;
however, we keep the estimators running and the control gains
updating; the aforementioned product of matrices is still not
deadbeat, but it is close to being so, in a sense which will be
apparent from the proof. To this end, we define a sequence
of switching times as follows: we initialize t̂0 := t0 and then
define

t̂` := t̂0 + `N, ` ∈ N.

So the switching signal is piecewise constant of the form

σ(t) = σ(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+; (24)

the algorithm to compute σ(t̂`) will be introduced shortly. We
propose the choice of the control law

v(t) = K̂σ(t−1)(t− 1)ψσ(t−1)(t− 1), t > t0, (25)

which generates the auxiliary control input; this is combined
with (5) to yield the plant control input

u(t) = v(t) +

g∑
j=1

qju(t− j), t > t0. (26)

What remains to be defined is the choice of the switching
signal σ(t̂`), which we will do in the next subsection.

C. Switching Algorithm
With N ∈ N, define the set of switching times by

TN :=
{
t̂` ≥ t̂0 : t̂` = t̂0 + `N, ` ∈ Z+

}
. (27)

To proceed, for each i ∈ I∗ we define a performance signal
Ji : TN → R+ by

Ji(t̂`) :=

t̂`+1−1∑
j=t̂`

ρi(j)
|ei(j + 1)|∥∥ψ̄(j)

∥∥ , ` ∈ Z+; (28)

this quantity is an upper bound on the amount of change in
θ̂i(t) on the interval [t̂`, t̂`+1). We may expect the estimator
with the least amount of update to be the best one, which
would lead to a switching signal of the form

σ(t̂`+1) = argmin
i∈I∗

Ji(t̂`).

Although this rule works in every simulation that we have
tried, a proof remains elusive; a potential problem is that the
switching signal could oscillate between two bad choices, and
never (or rarely) choose a “correct” one. Instead, we propose
a different approach. At each switching time t̂` we have an
admissible set I(t̂`): we initialize I(t̂0) = I∗, and we obtain
I(t̂`+1) from I(t̂`) by removing all j ∈ I(t̂`) satisfying

Jσ(t̂`)(t̂`) ≤ Jj(t̂`),

i.e. we keep all models in the admissible index set for which
the performance signal is better (i.e. smaller) than the one we
are currently using; clearly j = σ(t̂`) satisfies this bound, but
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more j’s may as well; if this results in I(t̂`+1) being empty,
then we reset I(t̂`+1) to be I∗. This Switching Algorithm is
summarized as follows: with σ(t̂0) = σ0 and I(t̂0) = I∗:

Î(t̂`) =
{
i ∈ I∗ : Ji(t̂`) < Jσ(t̂`)(t̂`)

}
, (29a)

I(t̂`+1) =

{
I∗ if I(t̂`) ∩ Î(t̂`) = ∅
I(t̂`) ∩ Î(t̂`) otherwise,

(29b)

σ(t̂`+1) = argmin
i∈I(t̂`+1)

Ji(t̂`), ` ∈ Z+. (29c)

Remark 3. We define the index set reset times as those
t̂`, ` ∈ Z+, for which I(t̂`) = I∗.

We refer to Figure 2 for an illustration about time steps,
switching times, and index set reset times on the timeline. Now
we present a desirable property of the switching algorithm
(29).

Lemma 1. When the controller (18), (23)–(25), and (27)–
(29) is applied to the auxiliary plant (10), for every n ∈
{1, 2, . . . , n̄} and θ∗ ∈ Θ̃n, t0 ∈ Z, σ0 ∈ I∗, ψ̄(t0) ∈ R2n̄+g ,
N ≥ 1, θ̂i(t0) ∈ Si (i ∈ I∗) and w, y∗ ∈ `∞, if t̂` and t̂¯̀
are two consecutive index set reset times, then there exists a
`∗ ∈ [`, ¯̀) such that:

Jσ(t̂`∗ )(t̂`∗) ≤ Ji∗(t̂`∗). (30)

Remark 4. Lemma 1 says that, between every two index set
resets, there is an interval of the form [t̂`∗ , t̂`∗+1) for which the
performance associated with the chosen index is equal to or
better than that of the performance associated with the correct
index.

Proof of Lemma 1. Let n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n,
t0 ∈ Z, σ0 ∈ I∗, ψ̄(t0) ∈ R2n̄+g , N ≥ 1, θ̂i(t0) ∈ Si (i ∈ I∗),
and w, y∗ ∈ `∞ be arbitrary. Let t̂` and t̂¯̀ be two consecutive
index set reset times.

We prove (30) by contradiction; assume that

Jσ(t̂j)(t̂j) > Ji∗(t̂j), for all j ∈ [`, ¯̀). (31)

Then, according to (29a), we should have

i∗ ∈ Î(t̂j), j ∈ [`, ¯̀). (32)

We know by the definition of index resets that for all j ∈ (`, ¯̀)
we have I(t̂j) 6= I∗, which means that by (29b)

I(t̂j) = I(t̂j−1) ∩ Î(t̂j−1), j ∈ (`, ¯̀);

then by induction we see that

I(t̂j) = I(t̂`) ∩ Î(t̂`) ∩ Î(t̂`+1)∩ · · · ∩ Î(t̂j−2) ∩ Î(t̂j−1),

j ∈ (`, ¯̀).

But I(t̂`) = I∗, so using (32) in the above, we see that

i∗ ∈ I(t̂j), j ∈ [`, ¯̀) (33)

as well. So according to this and to (32) we have i∗ ∈
I(t̂¯̀−1) ∩ Î(t̂¯̀−1). However, we know by the definition of
index resets and (29b) that I(t̂¯̀−1) ∩ Î(t̂¯̀−1) = ∅, which is
a contradiction, so it must be that (31) does not hold. �

In the above we do not make any claim that θ∗ ∈ Sσ(t) at
any time; it only makes an indirect statement about the size of
the prediction error. It turns out that this is enough to ensure
that the desired closed-loop behavior is attained.

IV. THE MAIN RESULT

We will define a vector φ̄(t) ∈ R2(n̄+g)

φ̄(t) :=
[
y(t) y(t− 1) · · · y(t− n̄− g + 1)

u(t) u(t− 1) · · · u(t− n̄− g + 1)
]>

to serve as the “plant state”; while this is longer than what is
needed for a minimal state representation of (1), the choice
will facilitate our analysis. Recall that the vectors ψi, i ∈ I∗,
and ψ̄ contain values of the tracking error and the auxiliary
control input, while the vector φ̄ contains values of the plant
input and output. Before proceeding, it is convenient to define
a weighted sum of past values of y∗:

ỹ∗(t) :=

n̄+g−1∑
j=0

|y∗(t− j)|. (34)

Theorem 1. For every λ ∈ (0, 1), δ ∈ (0,∞] and N ≥
2n̄+g, there exists a constant γ > 0 so that when the adaptive
controller consisting of the parameter estimators (18), control
gains (23), switching signal (24) with switching times (27),
performance signal (28), switching algorithm (29), and control
law (25) and (26), is applied to the plant (1), for every n ∈
{1, 2, . . . , n̄} and θ ∈ Θn, t0 ∈ Z, φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗,
θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞,

i) the following bound holds:

‖φ̄(t)‖ ≤ γλt−τ‖φ̄(τ)‖+

γ

t−1∑
j=τ

λt−1−j(|w(j)|+ |ỹ∗(j + 1)|), t > τ ≥ t0; (35)

ii) if Q(z−1)Y ∗(z) = 0 and Q(z−1)W (z) = 0, then
y(t)→ y∗(t) exponentially fast, in the sense that

|ε(t)| ≤ γλt−t0
(
‖φ̄(t0)‖+ ‖y∗‖∞

)
, t ≥ t0.

Remark 5. The above result shows that the closed-loop
system experiences linear-like behavior. There is a uniform
exponential decay bound on the effect of the initial condition,
and a convolution bound on the effect of the exogenous inputs.
This implies that the system has a bounded gain (from w and
y∗ to y) in every p-norm. For example, for p = ∞, we see
from the above bound that

‖φ̄(t)‖ ≤ γ(n̄+g)
1−λ

(
λt−t0‖φ̄(t0)‖+ ‖w‖∞ + ‖y∗‖∞

)
, t ≥ t0.

Hence, if w, y∗ ∈ `∞, then y, u ∈ `∞, so ε, v, ei (i ∈ I∗) lie
in `∞ as well.

Proving Theorem 1 requires two steps:
• First, we analyze the adaptive control system to obtain a

desired bound on the key quantity ψ̄(t) (which consists of
present and past values of the tracking error and the auxiliary
input), which plays a key role in the auxiliary model (10),
the parameter estimator (18), and the control law (25); this
requires a careful analysis of the closed-loop system.
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· · · t0 + 2N

t̂2

· · ·

· · ·

t0 + (`1 − 1)N

t̂`1−1

· · · t0 + `1N

t̂`1

t̂`1

· · · t0 + (`1 + 1)N

t̂`1+1

· · ·

· · ·

t0 + `2N

t̂`2

t̂`2

· · ·

· · ·

· · ·

t0 + `jN

t̂`j

t̂`j

· · ·

· · ·

· · ·
Fig. 2. Illustration of the time instants, switching times, and the index set reset times.

• Second, we use linear system theory to translate the bound
on ψ̄ to a bound on φ̄ (which consists of present and past
values of the plant’s input and output).

To enhance readability and to focus the reader’s attention on
the most important aspects of the approach, we will present
the first part in the form of a Proposition, whose proof we
place in the main body, while the proof of the second part is
placed in the Appendix.

Proposition 3. For every λ ∈ (0, 1), δ ∈ (0,∞] and N ≥
2n̄+g, there exists a constant c > 0 so that when the adaptive
controller (18), (23)–(25), and (27)–(29) is applied to the
auxiliary plant (10), for every n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n,
t0 ∈ Z, ψ̄(t0) ∈ R2n̄+g , σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and
w, y∗ ∈ `∞, the following holds

‖ψ̄(t)‖ ≤ cλt−τ‖ψ̄(τ)‖+

t−1∑
j=τ

cλt−j−1|w̄(j)|, t > τ ≥ t0.

Before presenting the proof of this Proposition, we need a
crude bound on the closed-loop behavior; the proof of this is
in the Appendix.

Lemma 2. For every p ≥ 0, there exist constants c̄1, c̄2 ≥ 1 so
that when the adaptive controller (18), (23)–(29) is applied to
the plant (1), for every n ∈ {1, 2, . . . , n̄} and θ ∈ Θn, t0 ∈ Z,
t ≥ t0, N ≥ 1, σ0 ∈ I∗, φ̄(t0) ∈ R2(n̄+g), θ̂i(t0) ∈ Si
(i ∈ I∗), and w, y∗ ∈ `∞, the following hold:

i) ‖ψ̄(t+ p)‖ ≤ c̄1‖ψ̄(t)‖+ c̄1

p−1∑
j=0

|w̄(t+ j)|.

ii) ‖φ̄(t+ p)‖ ≤ c̄2‖φ̄(t)‖+ c̄2

p−1∑
j=0

(|w(t+ j)|+ |ỹ∗(t+ j)|).

Proof of Proposition 3. Fix λ ∈ (0, 1), δ ∈ (0,∞] and
N ≥ 2n̄ + g. Let n ∈ {1, 2, . . . , n̄}, θ∗ ∈ Θ̃n, t0 ∈ Z,
ψ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and
w, y∗ ∈ `∞ be arbitrary. We denote the sequence of index
set reset times by t̂`0 , t̂`1 , t̂`2 , . . . (see Figure 2).
Step 1: Obtain a state-space model describing ψ̄(t) for
t ∈ [t̂`, t̂`+1).

It will be convenient for analysis to have all of the parameter
estimates and controller gains to be of the same length. To this
end, we will pad θ̂i(t) and K̂i(t) by zeros in the appropriate
locations: we define Θ̂i(t) ∈ R2n̄+g by

Θ̂i(t) :=
[
ˆ̄ai,1(t) ˆ̄ai,2(t) · · · ˆ̄ai,ni+g(t) 0>n̄−ni

b̂i,1(t) b̂i,2(t) · · · b̂i,ni
(t) 0>n̄−ni

]>
and ˆ̄Ki(t) ∈ R2n̄+g by

ˆ̄Ki(t) :=
[
−p̂i,1(t) −p̂i,2(t) · · · −p̂i,ni+g(t) 0>n̄−ni

−l̂i,1(t) −l̂i,2(t) · · · −l̂i,ni(t) 0>n̄−ni

]
;

so by definition of the prediction error (13) and from the

control law in (25) we have

ε(t+ 1) = θ̂σ(t)(t)
>ψσ(t)(t) + eσ(t)(t+ 1)

= Θ̂σ(t)(t)
>ψ̄(t) + eσ(t)(t+ 1) (36)

v(t+ 1) = K̂σ(t)(t)ψσ(t)(t)

= ˆ̄Kσ(t)(t)ψ̄(t). (37)

Next, define the matrix Ai(t) ∈ R(2n̄+g)×(2n̄+g) by

Ai(t) :=


Θ̂i(t)

>[
In̄+g−1 0(n̄+g−1)×(n̄+1)

]
ˆ̄Ki(t)[

0(n̄−1)×(n̄+g) In̄−1 0n̄−1

]
 ; (38)

using (21) it is easy to verify that the characteristic equation
of the matrix Ai(t) (for frozen time t) satisfies

det
(
zI2n̄+g −Ai(t)

)
= z2n̄+g[Âi(t, z

−1)L̂i(t, z
−1) + B̂i(t, z

−1)P̂i(t, z
−1)]

= z2n̄+g.

This means that for every i ∈ I∗, for each time t the matrix
Ai(t) has all of its eigenvalues at zero. Also define B1 :=
e1 ∈ R2n̄+g and

∆i(t) := ρi(t)
ei(t+ 1)

‖ψ̄(t)‖2
B1ψ̄(t)> (39)

so we have

B1ei(t+ 1) = ∆i(t)ψ̄(t) +B1 [1− ρi(t)]ei(t+ 1)︸ ︷︷ ︸
=:ηi(t)

.

From (36) and (37), the fact that the switching signal is
constant on [t̂`, t̂`+1), and the definition of ψ̄, we have that

ψ̄(t+ 1) = Aσ(t)(t)ψ̄(t) +B1eσ(t)(t+ 1)

= Aσ(t̂`)(t̂`)ψ̄(t) +
[
Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)

]
ψ̄(t)+

B1eσ(t̂`)(t+ 1)

= Aσ(t̂`)(t̂`)ψ̄(t)+[
Aσ(t̂`)(t)−Aσ(t̂`)(t̂`) + ∆σ(t̂`)(t)

]
ψ̄(t) +B1ησ(t̂`)(t),

t ∈ [t̂`, t̂`+1), ` ∈ Z+. (40)

Step 2: Obtain a bound on ‖ψ̄(t̂`+1)‖ in terms of ‖ψ̄(t̂`)‖.
We now are going to analyze the key equation (40) in detail;

we make the following observations. For t ∈ [t̂`, t̂`+1), we
have Aσ(t̂`)(t̂`) ∈ R(2n̄+g)×(2n̄+g) to be a constant matrix
with all eigenvalues equal to zero; since N ≥ 2n̄+ g,[

Aσ(t̂`)(t̂`)
]t̂`+1−t̂`

=
[
Aσ(t̂`)(t̂`)

]N
= 0. (41)

Next, note that for t ∈ [t̂`, t̂`+1) we have that the dimension
of θ̂σ(t)(t) is constant; by utilizing part 1) of Proposition 2 to
provide a bound on the difference between parameter estimates



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to �nal publication. Citation information: DOI 10.1109/TAC.2021.3052745, IEEE
Transactions on Automatic Control

SHAHAB AND MILLER : ASYMPTOTIC TRACKING AND LINEAR-LIKE BEHAVIOR USING MULTI-MODEL ADAPTIVE CONTROL 9

at two different point in time, the fact that the controller gains
are analytic functions of the parameter estimates, and (38), we
conclude that there exists a constant c1 such that∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)

∥∥∥
≤
∥∥∥Θ̂σ(t̂`)(t)− Θ̂σ(t̂`)(t̂`)

∥∥∥+
∥∥∥ ˆ̄Kσ(t̂`)(t)− ˆ̄Kσ(t̂`)(t̂`)

∥∥∥
=
∥∥∥θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

∥∥∥+
∥∥∥K̂σ(t̂`)(t)− K̂σ(t̂`)(t̂`)

∥∥∥
≤ (1 + c1)

t−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|∥∥ψ̄(j)

∥∥ ,

t ∈ [t̂`, t̂`+1), ` ∈ Z+. (42)

From (39) we obtain

‖∆σ(t̂`)(t)‖ = ρσ(t̂`)(t)
|eσ(t̂`)(t+ 1)|∥∥ψ̄(t)

∥∥ . (43)

So from (42), (43) and the definition of the performance signal
(28), there exists a constant c2 so that for all t ∈ [t̂`, t̂`+1):∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`) + ∆σ(t̂`)(t)

∥∥∥
≤
∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)

∥∥∥+ ‖∆σ(t̂`)(t)‖

≤ (1 + c1)

 t−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|∥∥ψ̄(j)

∥∥
+

ρσ(t̂`)(t)
|eσ(t̂`)(t+ 1)|∥∥ψ̄(t)

∥∥
≤ (1 + c1)︸ ︷︷ ︸

=:c2

t∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|∥∥ψ̄(j)

∥∥
≤ c2

t̂`+1−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|∥∥ψ̄(j)

∥∥
= c2Jσ(t̂`)(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+. (44)

To proceed, we need a bound on ηi(t).
Claim 1. There exists a c3 such that for all i ∈ I∗:

|ηi(t)| ≤ c3|w̄(t)|, t ≥ t0. (45)
Proof of Claim 1. If ρi(t) = 1, then ηi(t) = 0. If ρi(t) = 0,
then ηi(t) = ei(t+ 1) and from the estimator definition

|ei(t+ 1)| ≥ (2s̄ + δ)‖ψ̄(t)‖;

but notice that substituting (11) into (13) yields

ei(t+ 1) = ψi∗(t)>θ∗ − ψi(t)>θ̂i(t) + w̄(t)

⇒ |ei(t+ 1)| ≤ 2s̄‖ψ̄(t)‖+ |w̄(t)|.

Combining the above two statements:

2s̄‖ψ̄(t)‖+ |w̄(t)| ≥ (2s̄ + δ)‖ψ̄(t)‖ ⇒ ‖ψ̄(t)‖ ≤ 1

δ
|w̄(t)|;

this means that |ei(t + 1)| ≤ 2s̄
δ |w̄(t)| + |w̄(t)|, so define

c3 := 2s̄
δ + 1. �

Now we return to analyzing the key equation (40). Solving

for ψ̄(t̂`+1) yields

ψ̄(t̂`+1) =
[
Aσ(t̂`)(t̂`)

]t̂`+1−t̂`
ψ̄(t̂`)+

t̂`+1−1∑
j=t̂`

[
Aσ(t̂`)(t̂`)

]t̂`+1−j−1
([
Aσ(t̂`)(j)−Aσ(t̂`)(t̂`)+

∆σ(t̂`)(j)

]
ψ̄(j) +B1ησ(t̂`)(j)

)
. (46)

It follows from the compactness of the Si’s that∥∥∥∥[Aσ(t̂`)(t̂`)
]j∥∥∥∥ , j = 0, 1 . . . , N − 1, is bounded above by

a constant, which we label c4. So incorporating this and the
observations of (41), (44) and (45) into (46), we obtain

‖ψ̄(t̂`+1)‖ ≤ c4
t̂`+1−1∑
j=t̂`

(
c2Jσ(t̂`)(t̂`)‖ψ̄(j)‖+ c3|w̄(j)|

)

= c4c2Jσ(t̂`)(t̂`)

t̂`+1−1∑
j=t̂`

‖ψ̄(j)‖+ c4c3

t̂`+1−1∑
j=t̂`

|w̄(j)|. (47)

It follows from Lemma 2 (applied for p = 1, 2, . . . , N − 1)
that there exists a constant c5 so that the following holds:

t̂`+1−1∑
j=t̂`

‖ψ̄(j)‖ ≤ c5‖ψ̄(t̂`)‖+ c5

t̂`+1−2∑
j=t̂`

|w̄(j)|; (48)

so substituting (48) into (47) it follows that there exists a
constant c6 so that for all ` ∈ Z+:

‖ψ̄(t̂`+1)‖ ≤ c6Jσ(t̂`)(t̂`)‖ψ̄(t̂`)‖+

c6

(
1 + Jσ(t̂`)(t̂`)

) t̂`+1−1∑
j=t̂`

|w̄(j)|. (49)

Step 3: Obtain a bound on ψ̄ between index set reset times
which depend solely on Ji∗ .

Let t̂`j be an arbitrary reset time. From Lemma 1 we know
that there exists an `∗ satisfying `j ≤ `∗ < `j+1 such that

Jσ(t̂`∗ )(t̂`∗) ≤ Ji∗(t̂`∗). (50)

So here we will analyze the closed-loop behavior for

[t̂`j , t̂`j+1
) = [t̂`j , t̂`∗) ∪ [t̂`∗ , t̂`∗+1) ∪ [t̂`∗+1, t̂`j+1

).

The behavior on [t̂`∗ , t̂`∗+1) can be analyzed by combining
(49) with (50):

‖ψ̄(t̂`∗+1)‖ ≤ c6Ji∗(t̂`∗)‖ψ̄(t̂`∗)‖+

c6
(
1 + Ji∗(t̂`∗)

) t̂`∗+1−1∑
j=t̂`∗

|w̄(j)|. (51)

The behavior for the other two intervals can be analyzed by
utilizing Lemma 2. To this end, from the switching algorithm,
it is clear that

`j+1 − `j ≤ m, j ∈ Z+;

so t̂`j+1
− t̂`j ≤ Nm, which means that t̂`∗ − t̂`j ≤ Nm
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and t̂`j+1
− t̂`∗+1 ≤ Nm as well; so we can utilize Lemma

2 with p ≤ Nm: in particular, there exists a constant c7
so that ‖ψ̄(t̂`j+1)‖ ≤ c7‖ψ̄(t̂`∗+1)‖+ c7

∑t̂`j+1
−1

j=t̂`∗+1
|w̄(j)| and

‖ψ̄(t̂`∗)‖ ≤ c7‖ψ̄(t̂`j )‖+ c7
∑t̂`∗−1

j=t̂`j
|w̄(j)|. Now define

α(`j) := max
τ∈[`j ,`j+1)

Ji∗(t̂τ ) (52)

and w̃(j) :=
∑t̂`j+1

−1

q=t̂`j
|w̄(q)|; by combining these bounds

with (51) we conclude that there exists a constant c8 such that

‖ψ̄(t̂`j+1
)‖ ≤ c8α(`j)‖ψ̄(t̂`j )‖+ c8(1 + α(`j))w̃(j), j ∈ Z+.

(53)

Step 4: Analyze the first-order difference inequality (53).
We will analyze (53) to obtain a bound on the closed-loop

behavior of the system for the whole time horizon. The first
step is to analyze the square sum of α(·) over an interval;
from the definition of α(·) and the Cauchy-Schwarz property,
we have for all j2 > j1 ≥ 0:

j2−1∑
q=j1

α(`q)
2 =

j2−1∑
q=j1

(
max

p∈[`q,`q+1)
Ji∗(t̂p)

)2

≤
j2−1∑
q=j1

`q+1−1∑
p=`q

Ji∗(t̂p)

2

≤ m
j2−1∑
q=j1

`q+1−1∑
p=`q

Ji∗(t̂p)
2

= m

j2−1∑
q=j1

`q+1−1∑
p=`q

t̂p+1−1∑
τ=t̂p

ρi∗(τ)
|ei∗(τ + 1)|∥∥ψ̄(τ)

∥∥
2

≤ Nm
j2−1∑
q=j1

`q+1−1∑
p=`q

t̂p+1−1∑
τ=t̂p

ρi∗(τ)
|ei∗(τ + 1)|2∥∥ψ̄(τ)

∥∥2

= Nm

t̂`j2
−1∑

τ=t̂`j1

ρi∗(τ)
|ei∗(τ + 1)|2∥∥ψ̄(τ)

∥∥2 .

Using the above together with part 2) of Proposition 2, we
obtain, for any p > q ≥ 0:

p−1∑
j=q

α(`j)
2 ≤ 2Nm‖θ̃i∗(t̂`q )‖2 + 4Nm

t̂`p−1∑
j=t̂`q

ρi∗(j)
|w̄(j)|2∥∥ψ̄(j)

∥∥2 .

(54)

To proceed, let τ ≥ t0 be arbitrary. We define λ1 :=
λNm

max{1,c8} ∈ (0, 1). We now partition the timeline into two
parts: one in which w̄(·) is small versus ψ̄(·) and one where
it is not; with

ν :=

(
λ1

4Nm

)2

, (55)

we define

Sgood =

{
j ≥ τ : ψ̄(j) 6= 0 and |w̄(j)|2

‖ψ̄(j)‖2 < ν

}
,

Sbad =

{
j ≥ τ : ψ̄(j) = 0 or |w̄(j)|2

‖ψ̄(j)‖2 ≥ ν
}

;

clearly {j ∈ Z : j ≥ τ} = Sgood∪Sbad. Notice that if w̄ = 0,
then Sgood could be the whole timeline [τ,∞). We can clearly
define a (possibly infinite) sequence of intervals of the form
[kl, kl+1) which satisfy:
(i) k0 = τ serves as the initial instant of the first interval;
(ii) [kl, kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then
[kl+1, kl+2) belongs to Sbad, and vice versa.

Now we analyze the behavior during each interval.
Step 4.1: [kl, kl+1) ⊂ Sbad.

Let j ∈ [kl, kl+1) be arbitrary. In this case |w̄(j)|2

‖ψ̄(j)‖2 ≥ ν or

‖ψ̄(j)‖ = 0; in either case

‖ψ̄(j)‖ ≤ 1√
ν
|w̄(j)|.

Also, applying Lemma 2 for one step, there exists a constant
c9 so that

‖ψ̄(j + 1)‖ ≤ c9‖ψ̄(j)‖+ c9|w̄(j)|
≤ c9 1√

ν
|w̄(j)|+ c9|w̄(j)|, j ∈ [kl, kl+1).

This, in turn, implies that

‖ψ̄(j)‖ ≤

{
1√
ν
|w̄(j)| j = kl

c9( 1√
ν

+ 1)|w̄(j − 1)| j = kl + 1, . . . , kl+1.

(56)

Step 4.2: [kl, kl+1) ⊂ Sgood.
First suppose that kl+1 − kl ≤ 2Nm; then by Lemma 2 it

can be easily proven that there exists a constant c10 so that

‖ψ̄(t)‖ ≤ c10λ
t−kl‖ψ̄(kl)‖+ c10

t−1∑
j=kl

λt−j−1|w̄(j)|, t ∈ [kl, kl+1].

Now suppose that kl+1 − kl > 2Nm. This means that in
the interval of interest, namely [kl, kl+1), there are at least two
reset times: there exist q < p so that

kl ≤ t̂`q < t̂`p ≤ kl+1;

in fact, there may be many choices of q and p; so let q be
the smallest such q and p̄ be the largest such p. To proceed,
observe that ‖ψ̄(j)‖ 6= 0 and |w̄(j)|2

‖ψ̄(j)‖2 < ν for j ∈ [kl, kl+1).

Using this bound which holds on [kl, kl+1), together with the
fact that ‖θ̃i∗(t̂`q )‖ ≤ 2‖Si∗‖ ≤ 2s̄, we rewrite (54) to yield

p−1∑
j=q

α(`j)
2 ≤ 8Nms̄2 + 4Nm(t̂`p − t̂`q )ν

= 8Nms̄2 + 4N2m(`p − `q)ν
≤ 8Nms̄2 + 4N2m2(p− q)ν, q ≤ q < p ≤ p̄.

(57)

From the definition of ν in (55), the above bound can be
simplified to
p−1∑
j=q

α(`j)
2 ≤ 8Nms̄2 + (p− q)λ

2
1

4
, q ≤ q < p ≤ p̄. (58)
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Now we will analyze the difference inequality in (53). First,
we use (58) to bound the second occurrence of α in (53); from
(58) we see that α(`j) ≤

√
8Nms̄2 + λ21/4 =: c11, q ≤ j ≤ p̄.

So we can rewrite (53) to yield

‖ψ̄(t̂`j+1
)‖ ≤ c8α(`j)‖ψ̄(t̂`j )‖+ c8(1 + c11)︸ ︷︷ ︸

=:c12

w̃(j). (59)

We now proceed to solve the above difference inequality; we
will utilize the “inequality of arithmetic and geometric means”,
or the AM-GM inequality in short.
Claim 2. There exists a constant γ1 > 1 such that

p−1∏
j=q

α(`j) ≤ γ1λ
p−q
1 , q ≤ q < p ≤ p̄. (60)

Proof of Claim 2. Let q, p ∈ Z+ be arbitrary such that q ≤
q < p ≤ p̄. By the AM-GM inequality and the fact that
α(`j) ≥ 0, we obtain

p−1∏
j=q

α(`j) ≤

 1

p− q

p−1∑
j=q

α(`j)
2


p−q

2

.

Using (58) we obtain
p−1∏
j=q

α(`j) ≤
[

8Nms̄2

p− q
+
λ2

1

4

] p−q
2

.

So it is enough to prove that there exists a constant γ1 so that
[

8Nms̄2

j
+
λ2

1

4

] 1
2

︸ ︷︷ ︸
=:β(j)


j

≤ γ1λ
j
1, j > 0.

We can easily show that with ̄ :=

⌈(
s̄
λ1

)2
⌉
× 16Nm, we

have
8Nms̄2

̄
≤ λ2

1

2
,

which means that

β(j)j ≤ λj1 ≤ 1, j ≥ ̄.

Since β(j) decreases as j ≥ 1 increases, we conclude that if

we define γ1 := max

{
1,
(
β(1)
λ1

)̄}
, then

β(j)j ≤ γ1λ
j
1, j = 1, 2, . . . , ̄,

as well, so the claim holds. �

Using the bound in (60) and the definition of λ1 we obtain
p−1∏
j=q

[c8α(`j)] ≤ γ1λ
p−q
1 cp−q8 ,

≤ γ1λ
Nm(p−q), q ≤ q < p ≤ p̄. (61)

We can now proceed to solve (59) iteratively; if we use the
bound in (61), we see that

‖ψ̄(t̂`p)‖ ≤ γ1λ
Nm(p−q)‖ψ̄(t̂`q )‖+

p−1∑
j=q

γ1c12

(
λNm

)p−j−1
w̃(j), q ≤ q < p ≤ p̄.

We can now use Lemma 2 (for no more than Nm steps at a
time):

• to provide a bound on ‖ψ̄(t)‖ between consecutive index
set reset times, i.e. between t̂`j and t̂`j+1 ;

• to provide a bound on ‖ψ̄(t)‖ on the beginning part of
the interval [kl, kl+1), until we get to the first admissible
index set reset time t̂`q ;

• to provide a bound on ‖ψ̄(t)‖ on the last part of the
interval [kl, kl+1), after the last admissible index set reset
time t̂`p̄ .

After simplification, we conclude that there exists a constant
γ2 ≥ c10 so that

‖ψ̄(t)‖ ≤ γ2λ
t−kl‖ψ̄(kl)‖+ γ2

t−1∑
j=kl

λt−j−1|w̄(j)|,

t ∈ [kl, kl+1]. (62)

Step 4.3: Combining the bounds on Sgood and Sbad.
Now we combine Step 4.1 and Step 4.2 into a general bound

on ψ̄: we glue the bounds of Step 4.1 and Step 4.2 together.
Define γ̄ := max{γ2, c9(1 + 1√

ν
), γ2c9(1 + 1√

ν
)}.

Claim 3. The following bound holds:

‖ψ̄(t)‖ ≤ γ̄λt−τ‖ψ̄(τ)‖+

t−1∑
j=τ

γ̄λt−j−1|w̄(j)|, t ≥ τ. (63)

Proof of the Claim 3. If [k0, k1) = [τ, k1) ⊂ Sgood, then (63)
is true for t ∈ [k0, k1] by (62). If [k0, k1) ⊂ Sbad, then from
(56) we obtain

‖ψ̄(j)‖ ≤
{
‖ψ̄(τ)‖ j = k0 = τ
c9(1 + 1√

ν
)|w̄(j − 1)| j = k0 + 1, . . . , k1.

which means that (63) holds on [k0, k1] for this case as well.
We now use induction: suppose that (63) is true for t ∈

[k0, kl]; we need to prove it holds for t ∈ (kl, kl+1] as well.
If k ∈ [kl, kl+1) ⊂ Sbad, then from (56) we see that

‖ψ̄(j)‖ ≤ c9(1 + 1√
ν

)|w̄(j− 1)|, j = kl + 1, kl + 2, . . . , kl+1,

which means (63) holds on (kl, kl+1]. On the other hand, if
[kl, kl+1) ⊂ Sgood, then kl−1 ∈ Sbad; from (56) we have that

‖ψ(kl)‖ ≤ c9(1 + 1√
ν

)|w̄(kl − 1)|.

Using (62) to analyze the behavior on [kl, kl+1], we have

‖ψ̄(k)‖ ≤ γ2λ
k−kl [c9(1 + 1√

ν
)|w̄(kl − 1)|]

+

k−1∑
j=kl

γ2λ
k−j−1|w̄(j)|,

≤ γ̄
k−1∑

j=kl−1

λk−j−1|w̄(j)|, k ∈ [kl, kl+1], (64)

which implies that (63) holds. �
Finally, as τ ≥ t0 is arbitrary, it follows that the proof of

Proposition 3 is concluded. �
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Proof of Theorem 1 (Outline). A brief summary of the
proof of Theorem 1 is as follows. From the Proposition 3, we
directly get a bound on the y’s and prove exponential tracking.
We obtain a bound on the u’s based on the observability of
the augmentation of plant and (26). Finally we simplify and
get the desired bound (35) on φ̄(t). The details can be found
in the Appendix. �

V. ROBUSTNESS RESULTS
It turns out that the exponential stability property and the

convolution bounds proven in the main result of this paper
will guarantee robustness to a degree of time-variations and
unmodelled dynamics. In this way, the approach has a lot in
common with LTI systems, which also enjoys this feature.
Indeed, we have recently proven in [46] that this is true even in
a more general situation than one considered here; the results
there are a generalization of the robustness results in [33].
Here, we briefly discuss the setup and provide the key result,
while we refer you to that paper for full details of the proof.
We will show that if the time-variations are slow enough and
the size of the unmodelled dynamics is small enough, then the
closed-loop system retains the desired linear-like properties.

To proceed, we consider a time-varying version of the plant
(1). In order to apply [46], we would like the plant model
to incorporate the vector φ̄(t) regardless of the value of n ∈
{1, 2, . . . , n̄}, so we will pad θ with zeros in the obvious spots
and then write the time-varying version of plant (1) as

y(t+ 1) = θ(t)
>
φ̄(t) + w(t), t ∈ Z; (65)

we define Θn ⊂ R2(n̄+g) to represent the padded elements of
Θn, and define Θ := ∪n̄n=1Θn, which is clearly compact. We
adopt a common model of acceptable time-variations used in
adaptive control (e.g. see [25]).

Definition 1. For c0 and ε ≥ 0, let S
(
Θ, c0, ε

)
denote the

subset of `∞
(
R2(n̄+g)

)
whose elements θ satisfy θ(t) ∈ Θ

for every t ∈ Z and
t2−1∑
t=t1

‖θ(t+ 1)− θ(t)‖ ≤ c0 + ε(t2 − t1), t2 > t1, t1 ∈ Z.

Remark 6. The above model encompasses both slow-drift
variations (c0 = 0) and/or occasional jumps.

We now consider the time-varying plant (65) with the term
w∆(t) ∈ R added to represent the unmodelled dynamics:

y(t+ 1) = θ(t)>φ̄(t) + w(t) + w∆(t), t ∈ Z. (66)

We also adopt a common model of unmodelled dynamics used
in adaptive control: with β ∈ (0, 1) and µ > 0,

w(t+ 1) = βw(t) + β‖φ̄(t)‖, w(t0) = w0 (67a)
|w∆(t)| ≤ µw(t) + µ‖φ̄(t)‖; (67b)

see [33] for a more detailed explanation about this model.

Theorem 2. For every δ ∈ (0,∞], N ≥ 2n̄+g, β ∈ (0, 1) and
c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1) and γ̃ > 0 such
that when the adaptive controller (18), (23)–(29) is applied
to the time-varying plant (66) with w∆ satisfying (67), for

every t0 ∈ Z, φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ ∈ S
(
Θ, c̄0, ε̄

)
,

θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞, the following holds:∥∥∥∥[φ̄(t)
w(t)

]∥∥∥∥ ≤ γ̃λ̃t−t0 ∥∥∥∥[φ̄(t0)
w0

]∥∥∥∥+

t−1∑
j=t0

γ̃λ̃t−j−1(|w(j)|+ |ỹ∗(j + 1)|), t ≥ t0.

Proof. We apply Theorem 1 to prove a convolution bound on
the plant (1), and then apply Theorems 1–2 of [46]. �

VI. A SIMULATION EXAMPLE

In this example, we will show the efficacy of the proposed
approach, mainly in dealing with plant changes, noise and
unmodelled dynamics. We have the upper bound on the order
of the plant to be n̄ = 2; consider the following family of
plants: (i) first-order plants with an uncertainty set of

Θ1 =
{[
a1 b1

]> ∈ R2 : a1 ∈ [1, 3
2 ], b1 ∈ [−2,−1] ∪ [1, 2]

}
and (ii) second-order plants with an uncertainty set of

Θ2 =

{[
a1 a2 b1 b2

]> ∈ R4 :

a1 = 3
2 , a2 ∈

{−3
2 ,

3
2

}
, b1 ∈ [−1, 0], b2 ∈ [−5,−3]

}
.

It is obvious that each of the sets above is compact as required;
also, the coprimeness requirement is satisfied. You can see that
all potential models are unstable. Also, the 2nd-order models
are all nonminimum phase.

The goal is to track reference signals of frequency π
25 : so

we set Q(z−1) = 1− 2 cos( π25 )z−1 + z−2, i.e.

q1 = 2 cos( π25 ), q2 = −1, g = 2.

Observe that 2nd-order plant models have a real zero that
can lie in [3,∞), i.e. the associated B(z−1) and Q(z−1)
are coprime as required. Next, with n ∈ {1, 2} we use
the definition in (9) to construct the uncertainty sets of the
associated auxiliary plant; clearly these sets are compact. We
see that Θ̃1 and Θ̃2 are not convex; the convex hull of each
could violate the coprimeness requirement; for example notice
that the convex hull of Θ̃1 includes the case of b1 = 0,
which corresponds to a non-stabilizable system, violating the
coprimeness assumption. For each of Θ̃1 and Θ̃2, we will
need a set of compact and convex sets so that their union
contain Θ̃1 and Θ̃2 respectively and satisfy the coprimeness
requirement. There is a natural choice: define

S1 =

{[
ā1 ā2 ā3 ā4 b1 b2

]> ∈ R6 : ā1 = 3
2 + q1,

ā2 = −1− 3
2 (q1 + 1), ā3 = 3

2 (q1 + 1), ā4 = − 3
2 ,

b1 ∈ [−1, 0], b2 ∈ [−5,−3]

}
,

S2 =

{[
ā1 ā2 ā3 ā4 b1 b2

]> ∈ R6 : ā1 = 3
2 + q1,

ā2 = −1 + 3
2 (1− q1), ā3 = 3

2 (1− q1), ā4 = 3
2 ,

b1 ∈ [−1, 0], b2 ∈ [−5,−3]

}
,
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S3 =

{[
ā1 ā2 ā3 b1

]> ∈ R4 : ā1 ∈ [1 + q1,
3
2 + q1],

ā2 ∈ [−1− 3q1
2 ,−(1 + q1)], ā3 ∈ [1, 3

2 ], b1 ∈ [−2,−1]

}
,

S4 =

{[
ā1 ā2 ā3 b1

]> ∈ R4 : ā1 ∈ [1 + q1,
3
2 + q1],

ā2 ∈ [−1− 3q1
2 ,−(1 + q1)], ā3 ∈ [1, 3

2 ], b1 ∈ [1, 2]

}
;

clearly Θ̃1 ⊂ S3 ∪ S4 and Θ̃2 ⊂ S1 ∪ S2. The auxiliary
plant associated with the 2nd-order plant models has potential
poles of either complex ones, or real ones of values 2.186 or
−0.686, while it has a zero that lies in [3,∞); this means
that the coprimeness requirement is satisfied as well. So we
are going to estimate parameters using 4 parallel estimators;
however, we see that for S1 and S2, each has only one value for
parameters ā1, ā2, ā3 and ā4, which means that the estimation
of those parameters is trivial.

For this simulation, we set the plant to

y(t+ 1) =


3
2

[
y(t)− y(t− 1)

]
− 3

4u(t)− 4u(t− 1) + w(t), t ≤ 500
5
4

[
y(t) + u(t)

]
+ w(t), t > 500.

We set the reference signal to y∗(t) = 2 sin( π25 t) and the noise
to

w(t) =

{
0.05 cos(45t), 250 ≤ t < 750
0 otherwise.

We also consider some unmodelled dynamics enter the plant;
we use a term of the form discussed in Section V:

w(t+ 1) = 3
4w(t) + 3

4‖φ̄(t)‖, w(0) = 0

w∆(t) =

{
0 t < 700

0.075w(t) + 0.075‖φ̄(t)‖ otherwise.

We apply the proposed controller (18) and (23)–(29); we
choose N = 6 and δ =∞. We set the plant initial conditions
to y(0) = y(−1) = y(−2) = y(−3) = 1 and u(0) = u(−1) =
u(−2) = u(−3) = 0; we also set

θ̂1(0) =
[

3
2 + q1 −1 + 3

2 (1 + q1) 3
2 (q1 + 1) − 3

2 − 1
2 −4.5

]>
,

θ̂2(0) =
[

3
2 + q1 −1 + 3

2 (1− q1) 3
2 (1− q1) 3

2 − 1
2 −4.5

]>
,

θ̂3(0) =
[
3 −3 1 −2

]>
, θ̂4(0) =

[
3 −3 1 2

]>
,

and σ0 = 3. The results are in Figure 3. We see that the
controller provides good tracking performance. The perfor-
mance worsens temporarily when noise is added, when the
plant change happens, and when unmodelled dynamics enter
the system; however, tracking recovers quickly.

VII. SUMMARY AND CONCLUSION
In this paper, we consider the problem of tracking for a

discrete-time plant with unknown order; we assume knowl-
edge of an upper bound on the order, and the uncertainty
set of parameters for each admissible order must lie in a
compact set, subject to a coprimeness requirement. Rather than
directly estimating the plant parameters, we instead estimate
the parameters of a suitably defined auxiliary plant model. We
use compactness to prove that for each admissible order, the
uncertainty set is contained in a finite union of convex sets;
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Fig. 3. The upper plot shows both the reference (dashed) and the
output (solid); the next plot shows the plant control input; the bottom plot
shows the switching signal (solid) and the correct index (dashed).

we use a projection-algorithm based estimator for each convex
set. At each point in time, we employ a switching algorithm
to determine which model and parameter estimates are used
in the control law. We prove that this adaptive controller
guarantees very desirable linear-like closed-loop behavior:
exponential stability, a bounded noise gain in every p-norm,
and convolution bounds on the input-output behavior, as well
as exponential tracking for certain classes of reference and
noise signals. Furthermore, the linear-like properties of the
closed-loop behavior is leveraged to show tolerance to a degree
of small plant time-variations and unmodelled dynamics. An
example of sinusoid tracking is presented to illustrate the
results.

We would like to further investigate the performance of
the transient behavior which would be helpful for potential
design issues. Furthermore, our switching algorithm includes
a comparison of behavior over a short interval; a very natural,
simpler, switching algorithm, based on instantaneous compar-
ison, works in simulation, and we are striving to show that it
works in theory.

APPENDIX

Proof of Proposition 2. Fix n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n;
let t0 ∈ Z, t2 > t1 ≥ t0, ψ̄(t0) ∈ R2n̄+g , θ̂i(t0) ∈ Si (i ∈ I∗)
and w, y∗ ∈ `∞ be arbitrary.

For every estimator i, projection does not make the param-
eter estimate worse; for t ≥ t0, it follows from (18) that if
ρi(t) = 0, then ‖θ̂i(t+ 1)− θ̂i(t)‖ = 0, and if ρi(t) = 1, then

‖θ̂i(t+ 1)− θ̂i(t)‖ ≤ ‖θ̌i(t+ 1)− θ̂i(t)‖ ≤
|ei(t+ 1)|∥∥ψ̄(t)

∥∥ .

We conclude that part 1) follows by iteration.
Next, define ˇ̃

θi∗(t) := θ̌i∗(t)−θ∗; for t ≥ t0 when ρi∗(t) =
0, then θ̂i∗(t+ 1) = θ̂i∗(t), so we have

‖θ̃i∗(t+ 1)‖2 = ‖θ̃i∗(t)‖2; (69)
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on the other hand, when ρi∗(t) = 1, we have

ˇ̃
θi∗(t+ 1) = θ̃i∗(t) +

ψi∗(t)∥∥ψ̄(t)
∥∥2 ei∗(t+ 1)

⇒ ‖ ˇ̃θi∗(t+ 1)‖2 = ‖θ̃i∗(t)‖2 +
‖ψi∗(t)‖2|ei∗(t+ 1)|2∥∥ψ̄(t)

∥∥4 +

2
θ̃i∗(t)>ψi∗(t)ei∗(t+ 1)∥∥ψ̄(t)

∥∥2

≤ ‖θ̃i∗(t)‖2 +
|ei∗(t+ 1)|2∥∥ψ̄(t)

∥∥2 + 2
θ̃i∗(t)>ψi∗(t)ei∗(t+ 1)∥∥ψ̄(t)

∥∥2 .

(70)

Using (16) to obtain a representation for θ̃i∗(t)>ψi∗(t) in (70)
we obtain

‖ ˇ̃θi∗(t+ 1)‖2 ≤ ‖θ̃i∗(t)‖2 − |ei
∗(t+ 1)|2∥∥ψ̄(t)

∥∥2 +
2w̄(t)ei∗(t+ 1)∥∥ψ̄(t)

∥∥2

≤ ‖θ̃i∗(t)‖2 − |ei
∗(t+ 1)|2

2
∥∥ψ̄(t)

∥∥2 +
2w̄(t)2∥∥ψ̄(t)

∥∥2 .

Since projection does not make the parameter estimate worse,
it follows that

‖θ̃i∗(t+ 1)‖2 ≤ ‖θ̃i∗(t)‖2 − |ei
∗(t+ 1)|2

2
∥∥ψ̄(t)

∥∥2 +
2w̄(t)2∥∥ψ̄(t)

∥∥2 . (71)

If we combine the above bound for the case of ρi∗(t) = 1
with (69) for the case when ρi∗(t) = 0, and iterate, then we
obtain (20). �
Proof of Lemma 2. Fix p ≥ 0. Let n ∈ {1, 2, . . . , n̄} and
θ ∈ Θn, t0 ∈ Z, t ≥ t0, N ≥ 1, σ0 ∈ I∗, φ̄(t0) ∈ R2(n̄+g),
θ̂i(t0) ∈ Si (i ∈ I∗) and w, y∗ ∈ `∞ be arbitrary.

From the associated auxiliary plant (10) we see that |ε(t+
1)| ≤ ‖θ∗‖‖ψ(t)‖ + |w̄(t)| ≤ s̄‖ψ̄(t)‖ + |w̄(t)|. From (25)
and compactness, we have that there exists a constant γ1 so
that |v(t+ 1)| ≤ γ1‖ψ̄(t)‖. From the definition of ‖ψ̄(t+ 1)‖
given in (15), we have that ‖ψ̄(t+1)‖ ≤ ‖ψ̄(t)‖+ |ε(t+1)|+
|v(t+ 1)|. Combining these three bounds, we end up with

‖ψ̄(t+ 1)‖ ≤ (1 + s̄ + γ1) ‖ψ̄(t)‖+ |w̄(t)|.

We solve this iteratively for p steps and put c̄1 := (1+ s̄+γ1)p

to conclude the proof of part (i).
The proof of part (ii) is similar; we omit the details for

space considerations. �
Proof of Theorem 1. Fix λ ∈ (0, 1), δ ∈ (0,∞] and
N ≥ 2n̄ + g. Let n ∈ {1, 2, . . . , n̄}, θ ∈ Θn, t0 ∈ Z,
φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and
w, y∗ ∈ `∞ be arbitrary.

Let τ ≥ t0 be arbitrary. Then applying the adaptive
controller to the associated auxiliary plant (10), by Proposition
3 there exists a constant c such that

‖ψ̄(t)‖ ≤ cλt−τ‖ψ̄(τ)‖+

t−1∑
j=τ

cλt−j−1|w̄(j)|, t > τ. (72)

Step 1: Finding a bound on y(·).
It turns out to be easy to leverage (72) to provide first a

desired bound on the output y and its past values. Using the

definition of ψ̄ given in (15), the definition of ỹ∗ given in
(34), and the fact that y(t) = ε(t) + y∗(t), with a change in
the indexes it follows from (72) that∥∥∥∥∥∥∥
 y(t)

y(t−1)

...
y(t−n̄−g+1)


∥∥∥∥∥∥∥ ≤ cλt−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+

|ỹ∗(t)|+
t−1∑

j=τ+n̄+g

cλt−j−1|w̄(j)|, t > τ + n̄+ g; (73)

the reason for choosing a starting time of τ+ n̄+g rather than
τ will become clear later in the proof. Although this provides
a bound on the top part of φ̄, the quantity on the RHS differs
from that on the RHS of the desired bound (35). We will now
proceed to get a similar kind of bound on the bottom part of
φ̄, after which we convert the quantity in the RHS to one of
the desired form.
Step 2: Finding a bound on u(·).

We start by constructing a state-space model of the plant (1);
we will choose one of dimension n which is in controllable
canonical form:

x(t+ 1) = Ax(t) +Bu(t) (74a)
y(t) = Cx(t) + w(t− 1). (74b)

Corresponding to our coprimeness and compactness assump-
tions, the set of all such (A,B,C) triples lies in a compact
set.

From the plant control input defined in (26), we can view u
as the output of the following gth-order system. In fact, with
Q ∈ Rg×g defined by

Q :=


q1 q2 · · · qg−1 qg
1 0 · · · 0
0 1 0 · · · 0

...
. . .

...
0 · · · 0 1 0

, Bc := e1, Cc := e>1 ,

ξ(t) :=
[
u(t) u(t− 1) · · · u(t− g + 1)

]>
,

it follows that

ξ(t+ 1) = Qξ(t) +Bcv(t+ 1), (75a)
u(t) = Ccξ(t). (75b)

Since ε(t) = y(t) − y∗(t), by combining (74) with (75) we
obtain the augmented (n+ g)th-order state-space system[
x(t+ 1)
ξ(t+ 1)

]
=

[
A BCc

0g×n Q

]
︸ ︷︷ ︸

=:Ā

[
x(t)
ξ(t)

]
︸ ︷︷ ︸
=:x̄(t)

+

[
0
Bc

]
︸ ︷︷ ︸
=:B̄

v(t+ 1) (76a)

ε(t) =
[
C 0>g

]︸ ︷︷ ︸
=:C̄

[
x(t)
ξ(t)

]
+ w(t− 1)− y∗(t). (76b)

Since (74) is controllable and observable and does not have
common zeros with the eigenvalues of Q (Assumption 2), it
follows that (C̄, Ā) is observable; hence, there exists a unique
H̄ such that the eigenvalues of Ā + H̄C̄ are all zero and it
is well-known that H̄ is a continuous function of Ā and C̄.
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Now rewrite (76) as

x̄(t+ 1) =
[
Ā+ H̄C̄

]
x̄(t)+

− H̄ε(t) + B̄v(t+ 1) + H̄w(t− 1)− H̄y∗(t);

noting that [Ā+ H̄C̄]j = 0 for all j ≥ n+ g, the solution of
the above equation is

x̄(t) =

n+g∑
j=1

[
Ā+ H̄C̄

]j−1
([
−H̄ε(t− j) + B̄v(t− j + 1)

]
+

H̄[w(t− j − 1)− y∗(t− j)]
)
, t ≥ τ + n+ g.

We now want to analyze the behavior of x̄ in terms of ψ̄. But

ε(t− j) = e>j ψ̄(t− 1), j = 1, 2, . . . , n+ g,

v(t− j + 1) =

{
e>n̄+g+jψ̄(t), j = 1, 2, . . . , n
e>2n̄+gψ̄(t+ n− j), j = n+ 1, . . . , n+ g,

and ξ(t) is part of x̄(t), then there exists a constant γ1 so that

‖ξ(t)‖ ≤ γ1

g∑
j=0

‖ψ̄(t− j)‖+ γ1

t−1∑
j=t−n−g

|w(j − 1)|+

γ1|ỹ∗(t− 1)|, t ≥ τ + n+ g. (77)

Step 3: Finding a bound on φ̄.
We will use (72) to provide a bound on the ψ̄(·)’s on the

RHS of (77) in terms of ψ̄(τ + n̄ + g). While ξ(t) contains
u(t), u(t − 1), . . . , u(t − g + 1), the vector φ̄(t) contains
u(t), u(t− 1), . . . , u(t− n̄− g + 1). However, we see that∥∥∥∥∥∥∥

 u(t)
u(t−1)

...
u(t−n̄−g+1)


∥∥∥∥∥∥∥ ≤

n̄∑
j=0

‖ξ(t− j)‖. (78)

Now we apply the bound in (77) to obtain bounds on
ξ(t), ξ(t − 1), . . . , ξ(t − n̄); after simplification, we combine
the resulting bound with (73) and conclude that there exists a
constant γ2 so that∥∥φ̄(t)

∥∥ ≤ γ2λ
t−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+ γ2

n̄+1∑
j=0

|ỹ∗(t− j)|+

γ2

t−1∑
j=t−2n̄−g

|w(j − 1)|+ γ2

t−1∑
j=τ+n̄+g

λt−j−1|w̄(j)|,

t ≥ τ + 2n̄+ 2g. (79)

The bound in (79) looks very similar to the desired bound,
except for the use of w̄, the use of ψ̄ instead of φ̄, and the
starting point. We deal with these issues in that order.

(i) We first replace w̄(·) with its constituent signals: we see
from the definition of w̄ in (6) that w̄(j) is a weighted sum
of w(j), w(j − 1), . . . , w(j − g) and y∗(j + 1), y∗(j), y∗(t−
1) . . . , y∗(j − n− g + 1).

(ii) Next we want to have a bound on ‖ψ̄(τ+n̄+g)‖ in terms
of ‖φ̄(τ + n̄+g)‖. From the definition of ψ̄ and the definition
of the auxiliary input v, we see that ψ̄(t) consists of y(t) −
y∗(t), y(t−1)−y∗(t−1), . . . , y(t−n̄−g+1)−y∗(t−n̄−g+1)
and weighted sums of u(t), u(t − 1), . . . , u(t − n̄ − g + 1);
so by the definition of φ̄(·) we conclude that there exists a

constant γ3 such that

‖ψ̄(t)‖ ≤ γ3‖φ̄(t)‖+

n̄+g−1∑
j=0

|y∗(t− j)|, t ≥ t0. (80)

(iii) We now obtain a bound on ‖φ̄(τ + n̄+ g)‖ in terms of
‖φ̄(τ)‖ by utilizing Lemma 2 with p = n̄+ g.
If we incorporate the above three observations into (79) and
simplify, then we conclude that there exists a constant γ4 so
that ∥∥φ̄(t)

∥∥ ≤ γ4λ
t−τ‖φ̄(τ)‖+

γ4

t−1∑
j=τ

λt−j−1(|w(j)|+ |ỹ∗(j + 1)|),

t ≥ τ + 2n̄+ 2g + 1. (81)

Last of all, we can apply Lemma 2 directly to obtain the
desired bound for t ∈ [τ, τ +2n̄+2g], which we can combine
it with (81) to conclude that (35) holds.
Step 4: Proving exponential tracking.

Observe that if y∗ and w satisfy Q(z−1)Y ∗(z) = 0 and
Q(z−1)W (z) = 0, then from the definition of W̄ (z) in (6)
we have w̄(t) = 0. So from (72) and the definition of ψ̄, we
see that

|ε(t)| ≤ ‖ψ̄(t)‖ ≤ cλt−t0‖ψ̄(t0)‖, t ≥ t0.

Using (80) to obtain a bound on ‖ψ̄(t0)‖, we obtain the desired
bound on the tracking error. �
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